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This Review aims to present the current landscape of electronic- 
structure methods and of their application to understand, 
predict and design materials properties. In fact, for the past 

20 years, first-principles simulations have outgrown an initial core 
of developers and practitioners rooted in condensed-matter phys-
ics and quantum chemistry to become powerful and widely used 
tools in many and diverse fields of science and engineering. These 
approaches have led to remarkable predictions, and their complex-
ity and diversity can benefit from a bird’s eye view on capabilities 
and challenges. Given that simulations are currently run on digi-
tal computers, whose throughput capacity1 in recent decades has 
doubled every 12–18 months, that machine learning2 and artificial 
intelligence3 are accelerating the capabilities to either search for 
materials or to predict their properties, and that disrupting para-
digms might be leveraged—from neuromorphic4 to quantum com-
puting5—we can safely assume that their footprint (30,000 papers 
per year already in 20136) and relevance will only keep increasing.

Applications of electronic-structure methods range from nan-
otechnology to planetary science, from metallurgy to quantum 
materials, and the current push and excitement to accelerate or 
complement experiments with simulations makes it even more 
urgent to highlight not only their capabilities but also their limita-
tions. Simulations do not fail in spectacular ways, but can subtly 
shift from being invaluable to barely good enough to just useless. 
The reasons for failure are manifold, from stretching the capabilities 
of the methods to forsaking the complexity of real materials. But 
simulations are also irreplaceable: they can assess materials at con-
ditions of pressure and temperature so extreme that no experiment 
on Earth is able to replicate, they can explore with ever-increasing 
nimbleness the vast space of materials phases and compositions in 
the search for that elusive materials breakthrough, and they can 
directly identify the microscopic causes and origin of a macroscopic 
property. Last, they share with all branches of computational science 
a key element of research: they can be made reproducible and open 
and shareable in ways that no physical infrastructure will ever be.

This Review outlines the framework of density functional theory 
(DFT) and provides an overview of the many and ever-more-complex 
approaches that can improve accuracy or extend the scope of simu-
lations (Box 1), with a special focus on Green’s function methods 
and many-body perturbation theory (Box 2). Then, it discusses the 
capabilities that computational materials science has developed to 
exploit such a toolbox, and to deliver predictions for the proper-
ties of materials under realistic conditions or of ever-increasing 
complexity. Last, it underscores how physics-driven or data-driven 

approaches can provide rational, high-throughput or artificial intel-
ligence avenues to materials discovery, and how such efforts are 
changing the entire research ecosystem.

Electronic-structure methods
Introduction to DFT. DFT7 is currently the method of choice to 
compute efficiently and often accurately the ground-state proper-
ties of condensed systems: these include the energy of the ground 
state and its derivatives (for example, forces and stresses, that are 
used to find equilibrium structures). It is a widely used8 and mature 
technology; nevertheless, for materials simulations, codes have 
only recently started to be verified systematically against each other 
for numerical accuracy9–11. Validation against experiments has a 
much longer history, and recently, also aided by high-throughput 
approaches, a number of studies9,12–14 have appeared that provide 
comprehensive reference data on the prediction of, for example, 
elastic and electronic properties. Still, predictive accuracy remains 
one of the key challenges15, and progress requires often sound 
domain-specific knowledge to leverage these calculations.

A key advantage of DFT in its capability to address the complexity 
of materials is that it shifts the focus from finding the ground-state 
wavefunction (for N electrons, an exponentially exploding problem 
of a complex function of 3N variables) to finding the ground-state 
charge density (for any number of electrons, a much more tractable 
real function of 3 variables). The disadvantage is that the universal 
functional7 of DFT is not known, but just proven to exist: per specu-
lum et in aenigmate much progress has been made due to a com-
bination of superb physical intuition and some initial serendipity.

The DFT theorems and the Kohn–Sham picture. The first theo-
rem7 of DFT establishes a one-to-one correspondence between the 
external potential vext(r) acting on N interacting electrons and their 
ground-state charge density ρ(r) (these are scalar fields of the space 
variable r; typically, and in the Born–Oppenheimer approximation, 
vext(r) is the Coulomb attraction from all the atomic nuclei). Owing 
to this correspondence, it becomes formally equivalent to discuss 
any physical system either through N and vext(r), as the Schrödinger 
equation does, or through its ground-state charge density ρ(r), as 
DFT does. Thus, ρ(r) is a fundamental quantity, in the sense that 
it characterizes completely a physical system. The second theorem7 
completes the DFT formulation for the total energy, proving that 
there exists a functional F[ρ] that provides, for any ground-state 
ρ(r), the sum of the exact kinetic and electron–electron interaction 
energies (that is, the expectation values of these operators on the 
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exact ground-state wavefunction). F[ρ] is universal, since it does 
not depend on the external potential; adding to it ∫vextρdr provides 
a total-energy functional Evext [ρ] that is minimized by the exact 
ground-state density and gives the exact ground-state energy7. The 
original requirements of having non-degenerate ground states and 
of v–representability (that is, that the functional be defined only on 
charge densities that are actual ground states of local external poten-
tials) have then been relaxed by the Levy and Lieb formulations16.

While F[ρ] is formally well defined, it is not known. To make 
progress, Kohn and Sham (KS) suggested to decompose it in the 
sum of three functionals17 (Ts[ρ], EH[ρ] and Exc[ρ]) where the first 
two can be explicitly defined and calculated, and the unknown 
leftovers are pushed into the last one. To do so, they introduced an 
auxiliary system of electrons not interacting with themselves (the 
KS particles) that, when subjected to a local potential vKS(r), yields 
the same ground-state charge density of the real system of inter-
acting electrons in the external potential vext(r). Such construction 
provides a definition of what vKS is, and allows one to define Ts as the 
kinetic energy of the non-interacting KS particles, that is, a trivial  
second derivative of their single-particle orbitals (thus, Ts is an 

implicit functional of the density but an explicit functional of the KS 
orbitals). EH[ρ] is then set to be the classical, electrostatic (‘Hartree’) 
energy of the charge density ρ. This leaves to the ‘exchange correla-
tion’ (xc) functional Exc[ρ] the challenge to recover the exact energy 
by adding the missing parts of the kinetic energy of the interacting 
electrons not captured by the KS particles, and of the electron–elec-
tron interactions not captured by Hartree electrostatics. Crucially, 
Ts and EH contribute to a large fraction of F[ρ], albeit at the price of 
reintroducing orbitals to calculate Ts; the remaining xc functional 
Exc has to be approximated and will determine the accuracy of the 
calculations.

The ground-state energy can then be obtained by direct minimi-
zation of the total-energy functional Evext [ρ], or equivalently by the 
Euler–Lagrange equations associated with the variational principle. 
These are known as Kohn–Sham equations and, assuming discrete 
occupied states, are:

[

−
1
2∇

2 + vext(r) + vH(r) + vxc(r)
]

φn(r) = εnφn(r), (1)

Box 1 | Hierarchies of electronic-structure methods

The wavefunction domain. Greatly developed in quantum chem-
istry, the wavefunction domain starts from Hartree–Fock (HF) 
and post-Hartree–Fock approaches (a broad class of methods184 
ranging from Møller–Plesset (MP) perturbation theory to cou-
pled cluster (CC) and configuration interaction (CI)) to deliver 
improved accuracy. Some of these approaches have been extended 
to treat solid-state systems, also in combination with stochastic 
sampling185—quantum Monte Carlo (QMC) having a long his-
tory of delivering accurate results for materials186,187. Remarkably, 
the total energy can also be written as an explicit functional of the 
second-order reduced-density-matrix γ2, but the conditions for 
which γ2 is the contraction of a proper wavefunction are not known, 
precluding variational searches. These are known for the first-order 
γ1, but the correlation functional of reduced-density-matrix func-
tional theory (RDMFT)188 is unknown and has to be approximated.

The spectral domain. The spectral domain targets spectral proper
ties with many-body Green’s function methods; these introduce 
diagrammatic approximations for the non-local (that is, function 
of two space variables r and r′) and dynamical (that is, function of  
the frequency ω) self-energy Σ(r, r′,ω), allowing one to obtain 
the one-particle Green’s function and thus the spectral function 
and the total energy. Beyond, there is a hierarchy of equations of 
motion for the n-particle Green’s function Gn in terms of the Gn+1. 
Dynamical mean-field theory (DMFT)57,58 builds a self-energy for a 
localized manifold (typically for some d or f electrons) through the 
infinite-dimensional limit of the Anderson impurity model, obtaining 
an orbital-local or short-ranged GDMFT

loc (ω) that can describe strong 
correlations. Extensions include dynamical cluster approximations 
or the combination of DMFT and the GW approximation59.

In spectral formulations, the quasiparticle weights (determined 
from the derivatives of the self-energy with respect to frequency) 
do not have to be integers, and complex features such as satellites 
and side bands can emerge. Functionals dependent on orbital 
densities ρ(r, i), where i labels the different orbitals, can give rise to 
local and orbital-dependent self-energies189 aimed at reproducing 
the spectral properties190 of the interacting system. The resulting 
approaches are then flexible enough to address both total energies 
and spectral properties25,191.

The time-dependent and non-equilibrium domain. This domain 
is under very active development, also driven by the experimental 

capabilities to probe electron dynamics at ultrashort timescales. In 
time-dependent DFT (TDDFT)64,192, a correspondence is established 
between the time-dependent charge density and the external 
time-dependent potential and initial wavefunction; a KS picture 
then leads to a time-dependent exchange-correlation potential that 
depends on the entire history of the system. TDDFT can target the 
real-time evolution of a system of interacting electrons, but can also 
describe neutral excitations, since in exact TDDFT these are given 
by the poles of the density-response function193.

While practical TDDFT is still approximate, it asks the right 
question with respect to excitations (where are the poles?), and 
already adiabatic functionals (that are not history dependent) 
provide very good results in molecules. In solids simple xc 
approximations do not bind excitons, but progress can be made 
by directly approximating (in linear response) the fxc kernel64, or 
by using potentials from hybrid functionals49 or DFT+U194. These 
latter lead to time-dependent Hamiltonians with an effective 
non-local screened exchange, mirroring real-time approaches66,175 
to the solution of the Bethe–Salpeter equation (see Box 2). Last, 
non-equilibrium Green’s functions (NEGF) and the Kadanoff–
Baym equations65 allow for time-dependent generalizations of 
many-body perturbation theory that can, for example, address 
transients and time-resolved spectroscopies63.

G(r, r′, ω)

ρ(r, ω)

ρ(r, i )

Ψ(r1, r2, r3, . . . )

NEGF
G<(rt, r′t ′)

DFT
ρ(r)
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γ1(r, r′)
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ρ(r, t )
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Electronic-structure methods. The complex landscape of 
electronic-structure methods is captured here grouping hierarchies of 
methods that progressively extend scope and accuracy while increasing 
cost and complexity.
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ρ(r) =
∑ occ

n
|φn(r)|2, (2)

where vH and vxc are the functional derivatives with respect to ρ(r) 
of EH and Exc, φn and εn are the nth KS eigenstate and eigenvalue, 
and the sum runs over the occupied states. The solution of the KS 

equations needs to be self-consistent, since vH and vxc depend on the 
charge density ρ(r).

Exact properties. If the exact xc functional were known, ground-state 
total energies and charge densities would be exact. Quantities 
directly related to these—first-order and higher-order derivatives of 

Box 2 | Green’s function methods

Green’s function (GF) methods65,66 provide a systematic approach 
to address electronic excitations (for example, band structures or  
optical spectra) and, in principle, total energies. Here the fundamen-
tal quantity is G(rt, r′t′), the one-particle GF describing the time  
propagation of an interacting system when one electron is added  
at r′t′ and then removed at rt (vice versa for the hole; either case 
addresses a charged excitation). The GF obeys the Dyson equation  
G = G0 + G0ΣxcG, where Σxc[G] is the electronic self-energy captur-
ing the many-body complexity, and G0 is the GF of the Hartree  
Hamiltonian − 1

2∇
2 + vext + vH. For discrete states it leads to

[ −
1
2∇

2 + vext + vH ] fn(r) +
∫

dr′ Σxc(r, r′, εn)fn(r′) = εnfn(r),
(3)

G(r, r′,ω) =
∑

n

fn(r)f∗n(r′)
ω − εn ± i0+ , (4)

where equation (3) is an eigenvalue problem for the Dyson orbitals 
fn(r) that, through equation (4), provide the Fourier transform of 
the one-particle GF. It is remarkable that these coupled equations 
actually mirror the KS equations (1) and (2) for orbitals and den-
sity. The key difference lies in having a non-local and dynamical 
self-energy Σxc(r, r′,ω) rather than a local exchange-correlation 
potential.

The eigenvalues ϵn—the poles of the GF—are total energy 
differences for the addition or removal of an electron from 
the interacting system. The Dyson orbitals fn(r) are neither 
orthogonal nor normalized; for the occupied ones (that can 
be many more than N), the sum of their weights integrates to 
N. In the thermodynamic limit, the poles of the GF merge into 
a branch-cut continuum, giving rise to more complex spectral 
features, such as the broadening of the non-interacting peaks 

(hence, ‘quasiparticles’) and the emergence of satellites and side 
bands (see Fig. 7.2 in ref. 66). These can be experimentally detected 
by means of photoemission spectroscopy61.

Many-body perturbation theory constructs approximations 
to the self-energy by means of Feynman diagrams66; only certain 
classes are included, giving rise to many and ever-more-complex 
approaches. The most used one is the GW approximation114,183,196, 
Σxc = iGW, where W is the screened Coulomb interaction in the 
random-phase approximation66. Most of the time, GW is applied 
as a one-shot correction (G0W0) on top of KS states and energies. 
Self-consistency can improve the accuracy of excitation energies197 
and, recovering the missing particle conservation198, also of the 
total energies. Extensions beyond GW add additional diagrams 
to Σxc, from vertex corrections199 to cumulant expansions200. 
Diagrams describing the interaction with other excitations can 
also be added, and can be very relevant to predict or interpret 
experiments, as shown in the figure below.

The G2 Green’s function describes the dynamics of two particles 
(electrons and holes) added to the system and contains, among 
other, information about neutral excitations and response functions 
required to address optical properties and other spectroscopies. 
Taking the variation of G with respect to an arbitrary external 
perturbation leads65,66 to the Bethe–Salpeter equation (BSE), a 
Dyson-like equation for the two-particle correlation function 
L = − G2 + GG. Besides the bare exchange coming from the Hartree 
potential, the kernel of the BSE contains Kxc =

δΣxc
δG , paralleling the 

exchange-correlation kernel fxc = δvxc
δρ

 of TDDFT193. In the GW 
approximation, and neglecting the dependence of W on G, the BSE 
kernel becomes Kxc = iW, accounting for electron–hole interactions. 
This vertex equation can then be cast in the form of an eigenvalue 
problem for a two-particle Hamiltonian that can address excitonic 
effects66. In practical calculations172,173, it requires as a preliminary step  
the GW orbital energies and the screened Coulomb interaction W.
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Interacting excitations. a–d, The momentum-resolved spectral function of anatase195 calculated including the interactions of electrons with other 
excitations, that is, phonons (a), plasmons (b) and both (c), and compared with experiments (d). The dashed line in d is the Fermi energy for the 
doped sample. Credit: figure adapted with permission from ref. 195, APS
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the energy, or expectation values of local single-particle operators—
would also be exact. So, at the Born–Oppenheimer level, structural, 
elastic, dielectric, vibrational and thermodynamical properties of 
materials13,18 could all be described correctly, provided zero-point 
motion19 and finite-temperature anharmonicity20 were accounted 
for. In contrast, only a single spectral property would be explicitly 
reproduced by the KS particles: in a molecule (and in a solid, pro-
vided the vacuum level could be accessed21), exact KS DFT would 
recover the true highest occupied molecular orbital (HOMO) as 
its highest occupied KS eigenvalue, since this latter determines the 
asymptotic decay of the charge density, which needs to be exact. 
The exact KS HOMO is also the opposite of the exact ionization 
potential, owing to Janak’s theorem and the piecewise linearity of 
the total energy with respect to the total number of electrons21. No 
other KS level has a direct physical interpretation: even the posi-
tion of the exact KS lowest unoccupied molecular orbital (LUMO) 
is incorrect, making the KS gap different from the physical one22 
by the so-called derivative discontinuity (see below). Nevertheless, 
the optimized-effective-potential approach23 shows that the KS 
potential is the variational-best local and static approximation to 
the electronic self-energy (Box 2); this lends support to using the 
KS eigenvalues as orbital energies and band structures (since we do 
not have the exact KS functional, this is, except for the HOMO, a 
double approximation).

In a finite system, one can take the alternative Δ-SCF approach, 
where the ionization potential, electron affinity and HOMO–LUMO 
gap are obtained (exactly in exact DFT) as total-energy differences 
from separate self-consistent field (SCF) calculations performed 
with N − 1, N and N + 1 electrons, rather than as eigenvalues of a 
single calculation. For commonly used functionals, Δ-SCF breaks 
down in the thermodynamic limit of infinite systems and the results 
asymptotically approach the KS gap21,24,25. The exact functional leads 
instead to a potential that has a discontinuous (uniform in space) 
jump when an infinitesimal fraction of an electron is added to the 
system21. Intuitively, this derivative discontinuity is present because 
in exact KS DFT, the incorrect LUMO needs to become the cor-
rect HOMO as soon as it is infinitesimally filled, something that 
is very difficult to capture in approximate functionals and is the 
missing quantity to be added to the exact but unphysical KS gap to 
retrieve the correct fundamental one21,22. Such requirement makes 
exact KS DFT highly non-trivial21 and challenging to approximate 
or improve. Generalized KS schemes where the KS potential itself 
becomes non-local—such as meta-generalized-gradient approxi-
mations (meta-GGAs)26, DFT+U27 or hybrid functionals28—miti-
gate some of these failures14,24. Last, we note that, owing to the first 
Hohenberg–Kohn theorem, there exist in principle functionals of 
the density for any physical observable of the ground-state wave-
function, and not only those mentioned earlier. Nevertheless, these 
functionals are in general not known, and an independent varia-
tional principle for these might not exist.

Density functional practice. To perform an actual calculation, one 
needs to address the numerical solution of the KS equations and 
to approximate the xc functional. The numerical solution29 involves 
algorithmic choices (for example, direct minimization or iterative 
diagonalization); representation of the orbitals, with a wide vari-
ety of basis sets possible (atomic or numerical orbitals, wavelets, 
plane waves, linearized augmented plane waves, real-space grids), 
either with an all-electron or a pseudopotential treatment of the 
electron-ion interactions30; and numerical methods (for example, 
Monkhorst–Pack sampling and finite-temperature smearing). This 
variety translates to the many and widely used electronic-structure 
codes available nowadays (see, for example, Table 1 of ref. 31). For 
materials simulations, plane- and augmented-wave approaches—
naturally embodying periodicity—are some of the most commonly 
found. Localized basis sets become advantageous when dealing 

with large-scale applications, for which linear-scaling methods have 
been developed and applied32 (standard DFT calculations are cubic 
scaling, due to the orthonormality constraint of the KS orbitals in 
equation (1)). Linear scaling is also achieved if the non-interacting 
kinetic energy Ts[ρ] is approximated directly33. Finally, stochastic 
approaches34, even with sublinear scaling, have been proposed and 
extended to excited-state properties.

The quest for approximations to the xc functional is a more 
fundamental one. The local-density approximation (LDA) was 
already made in the original KS formulation17, applying Fermi’s 
suggestion to the xc functional rather than to the kinetic-energy 
functional. Albeit unbeknown at the time, LDA satisfies an exact 
sum rule for the xc hole35; it is this exact constraint, and the intu-
ition of building the non-interacting KS system to approximate 
the kinetic energy, that has allowed DFT to describe real materi-
als with predictive accuracy. The treatment of spin polarization 
and magnetism is very challenging, and extensions that introduce 
spin-resolved densities, functionals and spinors for non-collinear 
magnetism are then used16. Improving on LDA and its spin-resolved 
extension, which get so many things correct in the first instance, 
is a challenge. One approach is to introduce the gradients of the 
charge density, and then the kinetic-energy density, while satisfying 
as many exact and asymptotic constraints as possible. These GGAs36 
and meta-GGAs26 represent currently—especially with PBEsol and 
SCAN—some of the most used all-purpose functionals for mate-
rials simulations13; still, challenges remain37. Alternatively, one can 
train on higher-accuracy calculations, as is done for B3LYP38, the 
Minnesota functionals39 or those based on machine learning (for 
example, Bayesian error estimation or neural networks). Direct 
approximations of the KS potential, rather than the functional, 
have also been attempted: these include mBJ40 (a meta-GGA) and 
GLLB-SC41 (estimating the derivative discontinuity); both are used 
to improve bandgap predictions. Also, the quality of xc functionals 
can be improved, with substantial computational costs, through the 
adiabatic-connection fluctuation-dissipation theorem23,42.

Remarkably, most functionals are incorrect in one of the sim-
plest cases possible—one-electron systems—where the Hartree 
and xc terms should cancel exactly, as it happens in Hartree–Fock, 
to deliver the same solution as the Schrödinger equation43. The 
orbital-density-dependent Perdew–Zunger correction44 addresses 
this self-interaction error (SIE) in many-electrons systems, but 
may nevertheless require downscaling45. A number of authors have 
connected SIEs to the lack of piecewise linearity of the approxi-
mate total energy as a function of the number of electrons21, often 
heuristically extended to fractional occupations of deeper orbit-
als or manifolds43,46,47. Broadly speaking, short-ranged hybrids 
or Hubbard functionals27,28,46 improve total energies, while other 
range-separated or Koopmans functionals25,48,49 improve spectral 
properties. In fact, the success of hybrid functionals28,50,51, obtained 
by adding an appropriate fraction of full or range-separated Fock 
exchange, can also be rationalized as correcting SIEs and imposing 
some piecewise linearity.

The local nature of many approximations (the exact xc potential 
is local, but depends non-locally on the density everywhere) affects 
other key properties, from image potentials at metal surfaces to the 
1/r decay of vKS(r) and the Rydberg series in atoms and molecules to 
long-range van der Waals interactions. These latter interactions are 
particularly important for materials—from two-dimensional heter-
ostructures to molecular and organic solids—but notable progress 
has been made, and empirical or first-principles formulations have 
emerged52 that have greatly improved predictive accuracy.

The challenges. Some of the most important materials for scien-
tific advance and technological innovation remain challenging. 
Examples include mixed-valence systems53, magnetic materials54–56, 
lanthanides and actinides, defects and dopants; state-of-the-art 
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implementations often require individual attention for each mate-
rial studied. For magnetic systems, model Hamiltonians fitted 
on DFT calculations can be solved exactly, allowing for progress 
when the degrees of freedom of the model can be decoupled from 
the environment. Even more challenging are materials displaying 
strong correlations and the breakdown of the Fermi-liquid picture 
of quasiparticles (for example, with fluctuating localized/delocal-
ized f electrons, heavy-fermion behaviour, Hubbard side bands); 
dynamical mean-field theory (DMFT) and its extensions57–60 are 
often the tool of choice. And there are properties that escape com-
pletely current capabilities—high-temperature superconductivity in 
copper oxides being one of the most notable cases.

In addition, new and accurate instruments and facilities (from 
highly resolved photoemission61 to time-resolved pump–probe 
experiments62,63 to free-electron lasers) call for additional theoreti-
cal developments and implementations64–67. To provide some guid-
ance in this complex landscape we summarize in Box 1 many of 
the electronic-structure methods in use today, and in Box 2 Green’s 
function methods, of central relevance for the calculation of spec-
troscopic properties.

Predictions of materials properties and spectroscopies
The power of first-principles computational materials science 
has now become apparent owing to the wide range of properties  
and spectroscopies that can be studied for systems of increasing 
complexity66,68. As guidance, we sketch in Tables 1 and 2 the very 
rich phenomenology that can be addressed nowadays, providing 
pointers to the models, theories and electronic-structure toolbox 
that can be used to make these predictions. In the following, we 
present some selected subjects that are most relevant to materials, 
and highlight in Figs. 1 and 2 some milestone approaches that are 
now widely used.

Thermodynamic ensembles and realistic conditions. Volume 
and pressure are not only the simplest thermodynamic variables to 
control in periodic-boundary conditions but also some of the most 
powerful, owing to the relevance and phenomenological richness 
of high-pressure physics. In fact, first-principles simulations have 
had some of their early and notable impact in the field of materials 
under high pressure69,70, effortlessly imposing extreme conditions 
that might not even be possible in earthly experiments.

Table 1 | An overview of selected materials properties that can be obtained from DFT ground-state calculations

Materials properties Models and theories Electronic-structure toolbox

Atomic and cell geometries at fixed 
volume or pressure13,166

Hellmann–Feynman theorem Total energy, forces and stresses

Zero-temperature stability141–143: formation 
energies, elastic constants, defects 
concentrations167

Equations of state (Murnaghan, Birch, …), convex hulls, 
self-consistent chemical potentials

Total energies, forces and stresses for all different 
phases, defects, periodic-boundary corrections for 
charged defects

Chemistry and reactivity84,85, surface 
science88

Potential-energy surfaces, transition-state theory, 
volcano plots, kinetic Monte Carlo, rate equations, 
conical intersections, Marcus theory, Franck–Condon 
principle

Total energies and forces, van der Waals 
functionals, nudged-elastic-band method, 
constrained DFT, non-adiabatic dynamics (surface 
hopping, Ehrenfest)

Phonon dispersions and 
thermomechanical properties18, 
thermal and electrical transport19, 
superconductivity168

Linear-response theory, quasi-harmonic approximation, 
Grüneisen parameters, Boltzmann transport equation, 
equilibrium/non-equilibrium Green’s functions, 
Allen–Dynes formula, Migdal–Eliashberg equations, 
superconducting DFT

Density functional perturbation theory and 2n + 1 
theorem for el–ph, ph–ph interactions, Born 
effective charges, dielectric tensor

Dielectric18, magnetic123 and topological 
properties125, ferroelectrics92 and 
multiferroics169

Linear-response theory, modern theory of polarization 
and of magnetization, electric enthalpy, model 
Hamiltonians, topological invariants

Berry phases, maximally localized Wannier 
functions, Wilson loops, spin–orbit coupling

Magnetic phases54, magnetic anisotropy, 
spin waves55, skyrmions56

Spin Hamiltonians (Ising, Heisenberg, Dzyaloshinskii–
Moriya), paramagnetism as ensemble average

Spin–orbit coupling, non-collinear magnetism, 
force theorem, spin-density functionals

Thermodynamic ensembles71,77,78: 
finite-temperature properties and 
Helmholtz or Gibbs free energies81, 
transport coefficients108

Molecular dynamics, Monte Carlo, thermodynamic 
integration, metadynamics, path-integral molecular 
dynamics, Green–Kubo relations

Born–Oppenheimer and Car–Parrinello molecular 
dynamics, density functional perturbation theory, 
thermostats and barostats, ring-polymer mapping

Thermodynamic ensembles88,129,130,170: 
composition, chemical potential, partial 
pressure

Lattice Hamiltonians, Monte Carlo, mean-field 
approximation, cluster variation method, model 
entropies, special quasirandom structures

Cluster expansions, computational alchemy

Electrochemistry86,89, pH90, operando 
studies

Grand-canonical simulations for electrons and ions, 
embedding, double-layer and diffuse-layer models

Computational hydrogen electrode, model 
solvents and electrolytes, Poisson–Boltzmann 
solvers, ensemble simulations, coupling with 
reservoirs

Macroscopic mechanical properties109,110 
(strength, fracture, and plasticity), soft 
matter, biomolecules

Multiscale simulations, QM-MM, dislocation dynamics, 
effective volumes

Force fitting, learn-on-the-fly, neural networks and 
kernel-regression potentials

Microscopies171: STM, AFM, TEM Tersoff–Hamann model, electron scattering Local density of states, first-principles molecular 
dynamics, all-electron charge density and 
potential, PAW reconstructions

If the exact functional were known, these properties would be exactly reproduced, provided all the microscopic phenomenology were included. The second column points to the broader concepts, models 
and phenomenology from physics, chemistry and materials science; the third column highlights the electronic-structure quantities, algorithms and theories that are typically coded. Band-structure 
properties require more advanced methods, but are often approximated using KS states. STM, scanning tunnelling microscopy; AFM, atomic force microscopy; TEM, transmission electron microscopy; 
QM-MM, quantum mechanics - molecular mechanics; el, electron; ph, phonon; PAW, projector augmented wave.
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Temperature represents the first major computational chal-
lenge, since it requires probing atomic vibrations and motion, and 
a breakthrough came with Car–Parrinello molecular dynamics71, 
evolving simultaneously the nuclear and electronic degrees of free-
dom through an effective Lagrangian72. Other approaches followed, 
based on robust direct-minimization algorithms73 or efficient 
iterative ones74; these could be applied equally well to insulators 
or metals74,75. Thermostats and barostats can also couple simula-
tions76 to reservoirs to maintain the desired temperature or pres-
sure. First-principles molecular dynamics considers every nucleus 
as a distinguishable entity, and so the resulting statistics is the 
Maxwell–Boltzmann one of classical particles; imposing the cor-
rect Bose–Einstein statistics requires path-integral sampling77 or 
coloured-noise thermostats78. In the harmonic approximation, the 
dynamics of crystalline solids is that of an ensemble of indepen-
dent oscillators, for which the Bose–Einstein partition function can 
be calculated analytically. The capability to calculate phonon dis-
persions with density functional perturbation theory18,79,80 or with 
finite differences allows one to derive the Helmholtz free energy 
and, in the quasi-harmonic approximation, the temperature depen-
dence of the lattice parameter and the elastic constants18. Stronger 
anharmonicity can be tackled with molecular dynamics, where 
free energies can be obtained from thermodynamic integration81, 
with higher-order interatomic force constants or by sampling the 
phonon Green’s function20. Collective variables and metadynam-
ics82 allow one to capture the most relevant degrees of freedom and 
determine their free energy landscape.

In alloys, the dependence on composition can be studied by 
calculating free energies as a function of chemical potential to 
determine phase coexistence and composition–temperature phase 
diagrams (see ‘Building model Hamiltonians’ below); if one of the 
phases is liquid, full molecular dynamics simulations are required69. 
Ensemble simulations can also be applied to paramagnetic phases83. 
Surface science has been another early driver towards the explora-
tion of materials under realistic conditions: first rationalizing the 
descriptors driving reactivity84, exploring the complex potential 
energy surfaces of molecular chemisorption85,86 and surface recon-
structions87, and extending the dependence on chemical potentials 
to the partial pressure of a gas in equilibrium with a bulk or with a 
surface88 or to electrochemical potentials86,89 and pH90. Fittingly, the 
first high-throughput search for novel materials was driven by the 
quest for heterogeneous catalysts91.

Multiscale and multiphysics. The scope of materials properties that 
can be predicted from first-principles can be broadened further by 
multiscale or multiphysics simulations. The potential-energy sur-
face of crystals can be fitted to first-principles calculations, to study 
phase transitions, for example, in bulk ferroelectrics92 or in com-
plex geometries93. Such an approach has now been greatly expanded 
owing to progress in machine learning, where the potential-energy 
surface can be learnt on-the-fly94,95, fit to neural networks96 or fea-
turized in kernel-regression methods97 building on vast amounts 
of consistent calculations. Wannier Hamiltonians98 can capture the 
building blocks of electronic structure, providing tight-binding 

Table 2 | A selected overview of spectroscopic properties that can be obtained from DFT ground-state calculations or from  
excited-state spectral formulations

Spectroscopic properties Models and theories Electronic-structure toolbox

Vibrational spectroscopies18,19: infrared, Raman  
and hyper-Raman, SERS, SEIRAS, and SFG, IETS, 
HREELS, INS

Vibrations from harmonic and 
adiabatic approximations, 
anhamonicity, Placzek and Albrecht 
approximation, Fermi golden rule

Phonon frequencies, dispersions and lifetimes, electron–
phonon matrix elements. Born effective charges, 
frequency-dependent electric tensor, polarizability tensor, 
electric enthalpy, electric-field gradients

‘Charged excitation’ spectroscopies66,114: direct and 
inverse photoemission, ARPES61, UPS, STS171

Quantum field theory of electron–
electron and electron–boson 
interactions, diagrammatic 
perturbation theory, Hedin’s 
equations, one-step and three-step 
models, Tersoff–Hamann model

Green’s functions and self-energies, GW approximation, 
vertex corrections, cumulants, electron–phonon 
self-energies, DMFT, Koopmans spectral functionals, 
hybrids/range-separated/dielectric-dependent 
functionals

‘Neutral excitation’ spectroscopies66: optical 
absorption and luminescence172,173, Stokes shifts, 
colour and reflectivity174, nonlinear optics and 
second harmonic generation175, (non-resonant) IXS, 
EELS, resonant Raman, Auger recombination176

Light–matter interaction, electron 
scattering, linear and nonlinear 
response, first- and second-order 
Fermi golden rules, excited-state 
relaxations, trichromatic theory, 
Kramers–Heisenberg

TDDFT, Casida equations, Bethe–Salpeter equation, 
optical (q = 0) and finite-q limits of the dielectric 
response, real-time propagation

Magnetic spectroscopies113: NMR, EPR, quadrupolar 
coupling, g-tensor, hyperfine couplings, Knight 
shifts, MCD, muon spin spectroscopy, magnons55

Effective nuclear Hamiltonians, 
linear-response theory, modern  
theory of magnetization

Gauge-including projector augmented waves, Berry 
phases and converse NMR, all-electron reconstruction, 
electric-field gradients, TDDFT

X-ray spectroscopies: XPS114, XAS177,178 (XANES, 
EXAFS), RIXS, Compton scattering, XMCD

Light–matter interaction, Fermi golden 
rule, crystal-field splitting, multiplets 
and model Hamiltonians, dipole and 
impulse approximations

Full and half core–hole pseudopotentials, total energies, 
electronic states from DFT, GW, Bethe–Salpeter and 
wavefunction methods

Real-time64,65,179, ultrafast, pump–probe62,63,106 and 
two-dimensional spectroscopies

Out-of-equilibrium dynamics, 
time-dependent Boltzmann transport, 
Keldysh non-equilibrium Green’s 
function, Kadanoff–Baym equations

DFT, real-time propagation TDDFT, time-dependent 
current DFT, Ehrenfest dynamics, non-equilibrium 
Green’s functions

Quantum optics67,180,181 Field quantization QED DFT, QED many-body perturbation theory

See also Table 1 footnote. SERS, surface-enhanced Raman spectroscopy; SEIRAS, surface-enhanced infrared absorption spectroscopy; SFG, sum-frequency generation; IETS, inelastic electron tunnelling 
spectroscopy; HREELS, high-resolution electron energy loss spectroscopy; INS, inelastic neutron scattering; ARPES, angle-resolved photoemission spectroscopy; UPS, ultraviolet photoemission 
spectroscopy; STS, scanning tunnelling spectroscopy; IXS, inelastic X-ray scattering; EELS, electron energy loss spectroscopy; NMR, nuclear magnetic resonance; EPR, electron paramagnetic resonance; 
MCD, magnetic circular dichroism; XPS, X-ray photoelectron spectroscopy; XAS, X-ray absorption spectroscopy; XANES, X-ray absorption near-edge structure; EXAFS, extended X-ray absorption fine 
structure; RIXS, resonant inelastic X-ray scattering; XMCD, X-ray magnetic circular dichroism; QED, quantum electrodynamics; q, quasi-momentum transfer.
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parametrizations from first principles that can be used, for exam-
ple, to study device operations; state-of-the-art methods can also 
directly access the properties of realistic nanostructures99–101 and 
interfaces62,102.

A notable example of multiphysics simulations is that of trans-
port theories, where the microscopic dynamics of excitations is 
abstracted into the dynamics of their populations through mas-
ter equations103, such as the Boltzmann104 or Wigner105 transport  
equations, and extended also to non-equilibrium dynamics106. The 
finite excitation lifetimes due to the scattering mechanisms that 
limit transport—either extrinsic (such as defects) or intrinsic (most 
commonly, electron–phonon and phonon–phonon scattering)—
can be obtained from Fermi’s golden rule, for example, through 
the evaluation of the probability amplitudes for three-body events 
(these can be obtained from the third derivatives of the energy  
functional19,107). Green–Kubo relations can also provide transport 
coefficients directly from molecular dynamics108.

Structural materials have seen the development of multiscale 
methods to understand fracture, adhesion, yield strength and 
other quantities associated with the materials microstructure. 
First-principles calculations can then provide microscopic para
meters such as misfit volumes109 for phenomenological models at 
different scales, atomic forces to learn on-the-fly95, and stacking 
faults for dislocation dynamics110.

Materials spectroscopies. Spectroscopies are central to the charac-
terization of materials: matching accurate experimental measure-
ments with first-principles predictions provides both validation and 
understanding, and a causal relation between electronic and atomic 
phenomena and their macroscopic effects111,112. We summarize most 
of the techniques accessible to first-principles simulations in Table 2,  
using a classification that tries to follow the electronic-structure 
methods employed. Broadly speaking, there are spectroscopies that 
can be addressed by DFT (for example, some vibrational18,80 and 
magnetic113 spectroscopies, often addressed with density functional 
perturbation theory), and those that require the calculations of 
electronic excitations (charged excitations66,114, where the number 
of electrons in system varies, as in a photoemission experiment, or 
neutral excitations, where the number remains constant and elec-
tron–hole pairs are created, as in an absorption experiment66). This 
latter distinction recalls also the different gaps in materials, where 
the fundamental or transport gap is determined by the valence and 
conduction band edges, whereas the optical gap is lowered due to the 
presence of excitons. The correct description of excitations is thus 
also very relevant to transport115,116, in addition to its formal con-
nection at zero bias to linear response65. Owing to their importance 
and the requirement to go beyond DFT, we have dedicated part of 
Box 1 and the whole of Box 2 to spectral and non-equilibrium (time 
dependent) electronic-structure approaches.

–7.80a b c

d

e

fcc

bcc

hcp

β-TIN

Si

–7.82

–7.84

–7.86

E
ne

rg
y 

(R
y 

pe
r 

at
om

)

–7.88 4

3

2
1 Diamond

Hexagonal
diamond–7.90

–7.92

400

300

200

K X L X W L

100

Fr
eq

ue
nc

y 
(c

m
–1

)

0

0.6

0

Ti

Ti

Sc
Sc

V

V

Mn

Mn

Co

Co

Cu

Cu

Y

Y

Nb

Nb

Tc

Tc

Rh Ag Lu Ta Re Ir Au Si

1.0

E
nthalpy of form

ation (eV
 per atom

)

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

Cr

Cr

Fe

Fe

Ni

Ni

Zn

Zn

Zr

Zr

Mo

Mo

Ru

Ru
Rh
Pd
Ag
Cd
Lu
Hf
Ta
W

Re
Os

lr
Pt
Au
Hg
Sl
Al

Pd Cd Hf W Os Pt Hg Al

Ti
Sc V Mn Co Cu Y Nb Tc Rh Ag Lu Ta Re Ir Au Si

Cr Fe Ni Zn Zr Mo Ru Pd Cd Hf W Os Pt Hg Al

GaSb GaAs

TMG  = 1,080

XMG  = 0.60

0.2

1,200

1,000

Te
m

pe
ra

tu
re

 (
K

)

800

600
0.4 0.6 0.8 1.0

0.7 0.8 0.9 1.0 1.1

Volume

Г Г
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Electronic structure and topology. The topological properties of 
electrons in solids117,118 have rapidly taken a prominent role in cur-
rent condensed-matter physics and materials science. While these 
first manifested themselves with the integer and fractional quan-
tum Hall effects, in electronic-structure methods geometric phases 
emerged with the modern theory of polarization119, driven by the 
need to calculate the electronic polarization, a non-trivial task due 
to the fact that the position operator in a periodic solid is ill defined. 
It was shown that the polarization, when recast as an integral of the 
linear response to an electric field120, measures an adiabatic flow of 
current. This can be computed as the Berry phase acquired by the 
wavefunctions under parallel transport121, or, equivalently, from the 
displacements of the Wannier function centres98, which represent an 
exact mapping of the dielectric response into classical electrostatics. 
A complementary effort has also given rise to the modern theory of 
magnetization122,123; notably, an implication of these theories is that 
the xc functional may also depend on macroscopic quantities such 
as the polarization124. The topological properties of materials—from 
Chern and quantum spin Hall insulators to Weyl semimetals—
are nowadays very actively investigated with electronic-structure  
methods125, even charting the entire landscape of known materials126.

Materials’ design and discovery
Owing to the accuracy and efficiency of first-principles simulations, 
and the exponential availability of computational power, not only 

has the range of calculated materials properties expanded dramati-
cally but also the use of these to design and discover novel materi-
als has become an extremely active and growing research area. We 
identify four main approaches to first-principles design and discov-
ery, and briefly outline each one here: model Hamiltonians, struc-
ture prediction, high throughput and data driven.

Building model Hamiltonians. In this approach, calculated mate-
rials properties are mapped onto an explicit parametric model, 
which can then be explored more extensively than is possible with 
direct, first-principles calculations. One of the most famous exam-
ples comes from alloy theory in the form of the cluster expansion127 
(CE). The CE can address many problems in materials science 
that require the total energies of a large number of substitutional 
structures. Examples include the aforementioned composition–
temperature phase diagrams of alloys, but also the search for the 
lowest-energy structure among substitutional configurations of 
lattice sites by different species, the calculation of the energetics 
of random alloys, and the stability of differently oriented superlat-
tices, substitutional impurities or antiphase boundaries. In the CE, 
the energy of any atomic configuration on a lattice is written in a 
generalized Ising-like form in terms of products of single-site spin 
variables over clusters of atoms, where the coefficients of each term 
represent the effective interaction for that cluster. First-principles 
energies for selected sets of substitutional arrangements can then 

d

2a
60

10

8

6

4

2

0

E
ne

rg
y 

(e
V

)

0 20 40 60

Pressure (GPa)

50

40

30

0.4

0

BaFe2As2 T = 145 K

–0.1

–0.2

–0.3

Г+(0, 0, 0.5) Г+(0, 0, 0.5)M+(0, 0, 0.5)

Bi2Se3
0.3

0.2

0.1

0

–0.1

–0.2

–0.3

20

10

0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0
Ge

Te

bcc

β–Po

L4.5

L6

L6 X5

X5

L6

Г8

Г7
–2

–4

–6

E
ne

rg
y 

(e
V

)

E
ne

rg
y 

(e
V

)
Energy (eV)

Im
(ε

(ω
))

C
rit

ic
al

 te
m

pe
ra

tu
re

 (
K

)

–8
Theory
Experiment
Typical error–10

–12

–14
L X

Wave vector k

Г ΔΛ

K MГ

b c

d
e f

Fig. 2 | An overview of some key first-principles approaches to predict materials properties and spectroscopies. a, GW many-body perturbation 
theory: band structure of germanium183. b, Bethe–Salpeter equation: optical absorption of silicon172 (in particular: experiments, dotted line; Bethe–Salpeter 
prediction, thick solid line). c, Electron–phonon coupling: pressure-dependent critical temperature for two different superconducting phases of tellurium 
in the bcc and β-polonium structures168. d, Linear-scaling DFT: 20-base-pair fragment of DNA (left panel, colour map of the electrostatic potential on a 
charge-density isosurface; right panel, colour map of the charge density in the plane of the hydrogen bonds of a base pair)32. e, Recursive Green’s function 
method in a Wannier basis: topologically protected surface states in Bi2Se3 (ref. 117). f, (Extended) DMFT: doping and temperature-dependent band 
structure of hole-doped BaFe2As2 (ref. 60). Credit: panels reproduced with permission from: a, ref. 183, APS; c, ref. 168, APS; e, ref. 117, Springer Nature Ltd;  
f, ref. 60, Springer Nature Ltd. Panels adapted with permission from: b, ref. 172, APS; d, ref. 32, AIP

Review Article | INSIGHT
Review Article | INSIGHT
https://doi.org/10.1038/s41563-021-01013-3 INSIGHT | Review ArticleNaTure MaTerialS

Nature MaterIals | VOL 20 | June 2021 | 736–749 | www.nature.com/naturematerials 743

https://doi.org/10.1038/s41563-021-01013-3
http://www.nature.com/naturematerials


Review Article | INSIGHT NaTure MaTerialS

be fit to the CE, yielding the interactions. The resulting paramet-
ric CE can then be used in statistical mechanics simulations (such 
as Monte Carlo) or enumeration algorithms to solve the problems 
listed above, or inspire the choice of special ‘quasirandom’ periodic 
structures that target the correlation functions of more complex  
disordered materials128.

The use of first-principles calculations in the cluster expan-
sion was pioneered in the 1980s and 1990s129,130 and the approach  
has proven to be applicable to a wide range of systems, includ-
ing metal alloys131, semiconductor alloys129 and oxides132, but  
also vacancy ordering in superconductors133 and batteries134,  
surface ordering and precipitate shapes135. The CE is only an 
example of a much broader class of model-building approaches, 
but represents well the key idea of leveraging DFT calculations  
to parametrize a simpler Hamiltonian that can then be more  
extensively explored.

Structure prediction. The fundamental paradigm of materi-
als science involves the structure–property relation: the structure 
of a material (at all length scales) ultimately controls its prop-
erties. First-principles calculations require structures as input, 
and hence calculations can be aided by collections of experimen-
tal crystal structures. However, in the attempt to predict new, 
as-yet-undiscovered compounds, one is immediately faced with 
the challenge of predicting crystal structures a priori. The editor 
of Nature famously wrote in 1988: “One of the continuing scan-
dals in the physical sciences is that it remains impossible to pre-
dict the structure of even the simplest crystalline solids from a 
knowledge of their composition”136. In these subsequent years, 
dramatic progress has been made, and there now exists a collec-
tion of computational methods capable of predicting a wide array 
of crystal-structure types, often using only first-principles calcula-
tions and no other input. The structure-prediction problem is made 
difficult because of the very large dimensionality for the space of 
possible crystal-structure symmetries, cell shapes and basis vectors. 
Most of the structure-prediction methods are based on the idea 
of attempting to minimize the energy over this high-dimensional 
space, where the minimization is performed using an efficient opti-
mization algorithm.

Successful methods have used a variety of approaches, such as 
genetic algorithms, particle swarm methods, molecular dynam-
ics minima hopping, random structure searches and Monte  
Carlo techniques. A detailed description of these, along with  
substantial examples of their successful application to materials  
discovery, has recently been presented137. These approaches can  
also be applied to the structure–solution problem (that is, the 
solution of crystal structures given experimental diffraction 
data) by minimizing a cost function that is a combination of  
the first-principles total energy and the match to the experimental 
diffraction pattern138.

High-throughput first-principles calculations. Another suc-
cessful and widely used approach to materials design is that of 
high-throughput (HT) first-principles calculations1,91. Here the 
focus shifts from calculating the property of interest of one com-
pound at a time to computing it at scale for many compounds. In the 
extreme, one can even attempt to compute properties for all known 
or predicted compounds. HT calculations are made possible due to 
the automation of workflows in performing first-principles calcula-
tions, robust rates of automation for these calculations with little 
or no manual intervention, and the applicability of first-principles 
methods to most or all of the periodic table, owing to the availability 
of verified libraries of pseudopotentials10,74.

Some of the first HT calculations already combined ideas from 
machine learning and data-driven approaches: from the search, in 
combination with an evolutionary algorithm, for the most stable 

four-component alloys out of the 192,016 face-centred cubic (fcc) 
and body-centred cubic (bcc) structures that can be constructed 
out of 32 different metals91, to the Pareto-optimal set in compress-
ibility, stability and cost for alloys out of a HT dataset of thousands 
of metallic compounds139, to crystal-structure prediction through 
heuristic-rule extraction on a large library of calculated proper-
ties140. HT first-principles calculations have been used to build large 
and powerful databases of materials structures and properties, the 
earliest examples being the Materials Project141, AFLOWlib142 and 
the Open Quantum Materials Database (OQMD)143. Each of these 
is based on DFT-calculated properties of experimentally observed 
and of novel, predicted compounds. These databases include not 
only properties obtained from standard total-energy calculations 
(such as energy, density of states, electronic structure, magnetic 
moments) but also have been increasingly used to curate additional 
datasets for more complex properties (for example, elastic and 
piezoelectric tensors, thermoelectric properties, surface energies, 
phonon dispersions and X-ray absorption near-edge spectroscopy 
spectra). Their utility and versatility has been demonstrated by their 
application to design and discover novel materials in a vast array of 
applications: strengthening precipitates in structural alloys, lithium 
(and beyond) battery materials, efficient thermoelectric materials  
and solar thermochemical water-splitting materials, to name a few. 
Also, these databases are by no means the only examples and many 
new efforts are emerging—both delivering144–146 or consolidating 
curated data147.

In discovery efforts involving large datasets, a screening strategy 
is often employed: one starts with a large pool of candidate com-
pounds, and applies more and more stringent criteria to downselect 
the most promising compounds. Selection criteria prioritize quanti-
ties that are relatively straightforward and inexpensive to calculate, 
and only later introduce more computationally complex, and hence 
expensive, quantities for further refinement. A very common cri-
terion is the zero-temperature ground-state phase stability, which  
is identified through a convex hull approach (Box 3). Such a 
screening strategy is illustrated in Fig. 3, for the case of robust and  
synthesizeable photocatalysts for CO2 reduction148, but the litera-
ture offers many examples that have been summarized in several 
reviews1,149,150.

Data-driven approaches. Machine learning and data-driven 
approaches can greatly aid the search for new materials. Materials 
informatics approaches are generally based on three distinct com-
ponents: a resource of materials data, a representation to quanti-
tatively describe each material and machine learning algorithms 
to discover patterns within the data or to predict the properties of 
new materials. The use of HT computations for data collection has 
the great benefit of improving systematically and exponentially the 
size of the data pool, and the discovery or prediction portion of 
the workflow is greatly facilitated by open-source, state-of-the-art 
algorithms and software packages both in electronic-structure and 
machine learning.

The key challenge, therefore, lies in the construction of a mate-
rial representation. This representation is a set of quantitative attri-
butes that describe the relevant characteristics for the materials 
property of interest. Work in this field has generally fallen into two 
categories of representations: those that are functions of composi-
tion only, and those that additionally contain structural attributes 
of the crystallographic unit cell. Many of the composition-only 
attribute sets are primarily based on statistics of the properties of 
constituent elements. For instance, a material could be described 
just from the fraction of each element present and various intuitive 
properties, such as the maximum difference in electronegativity, to 
model the formation energies, bandgaps or other properties151–154. 
Incorporating structure-dependent attributes is an obvious  
route to improve the material representation. Examples of these 
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representations include the smooth overlap of atomic orbitals155, the 
pair radial distribution function and the Coulomb matrix156, with 
machine learning algorithms then built to predict scalar or tenso-
rial quantities or fields. Representations based on Voronoi tessel-
lation of crystal structures have been suggested, using the resulting 
attributes of the Voronoi polyhedral shape and connectivities157. A 
recent improvement comes from representations based on crystal 
graphs in a convolutional neural network158. These (and recently 
introduced variants159,160) are highly versatile approaches that can 
lead to accurate predictions, and involve learning material proper-
ties directly from graph-like representations of crystal structures 
(‘crystal graphs’).

Data-driven machine learning models of materials properties 
have seen a large number of applications targeted at the discovery 
of novel materials with promising properties; many of these models 
have also been used to direct HT searches, by steering these effi-
ciently towards more promising compounds. In fact, the discovery 
rate for new and stable compounds has been greatly accelerated by 
the use of machine learning156,160. Recent studies161,162 have shown 
how ideas from network theory can be applied to HT datasets, 
by mapping these data onto graph representations and analysing 
the topological features of this graph. This approach allows for a 
top-down study of the organizational structure of networks of 
materials, based on the interaction between materials themselves. 
A large-scale network has been defined by the convex hull of essen-
tially all compounds in the OQMD dataset; analysis of this ‘com-
plete phase-stability network of all inorganic materials’ shows that it 
is a densely connected complex network of 21,000 thermodynami-
cally stable compounds (nodes) interlinked by 41 million tie-lines 
(edges) defining their two-phase equilibria. Since the edges of the 
graph represent two-phase equilibria, the number of edges coming 
out of a node can be thought of as a measure of the stability of the 
compound. Hence, the connectivity of nodes in this phase-stability 
network allows for the derivation of a rational, data-driven metric 
for material reactivity, the ‘nobility index’.162 Another illustration 
of the power of this network theory approach involves assigning a 
time stamp to each node/compound associated with the year of its 

experimental discovery. This allows one to determine the graph at 
any previous point in time, and to determine whether the topol-
ogy of the graph shows any indication of the imminent discovery 
of a compound in the years before its synthesis. Training a machine 
learning model of this time evolution in terms of the topological 
features of the graph allows one to predict the likelihood that hypo-
thetical, computer-generated materials will be amenable to success-
ful experimental synthesis161.

68,860 inorganic compounds

(1) Thermodynamic stability53,185

11,507

509

235

163

52

(2) PBE bandgap

(3) Aqueous stability

(4) Small lattice

(5) HSE06 gap

(6) Band
edges

Fig. 3 | An illustration of the high-throughput screening approach. A 
large number of candidate materials are chosen from experimental or 
computational databases, and a sequence of screening calculations 
reduces their number down to a small set of candidates with the most 
promising properties148. Credit: figure reproduced with permission from ref. 
148, under a Creative Commons License CC BY 4.0

Box 3 | Convex hull construction

The convex hull is a powerful graphical construct for determin-
ing the phase stability of compounds (most commonly, at zero 
temperature). For a compound to be thermodynamically stable, it 
must not only be lower in energy than all other phases at the same 
composition but also be lower in energy than all linear combina-
tions of phases. If one identifies the lowest-energy linear combina-
tions of phases for each composition of a system, then the set of all 
such energies forms a convex hull. Phases that are on the convex 
hull are thermodynamically stable, and those that have an energy 
that lies above the convex hull are unstable or metastable. For a 
binary A–B system, there is only one composition variable, and 
so the convex hull can be represented as a two-dimensional (2D)  
object on a composition-energy plot (panel a). For an N-dimensional 
system, there are N − 1 independent compositions, and so the  
convex hull becomes an N-dimensional object. In ternary systems, 
the convex hull is 3D, but it is common to take a 2D projection of  
the convex hull on a Gibbs triangle, eliminating the energy axis 
(panel b). Similarly, in quaternary systems, the 4D convex hull  
is often represented as a 3D projection on a Gibbs tetrahedron 
(panel c). If one is given a set of DFT-calculated energies for a 
given system, determination of the convex hull is straightforward 
using a variety of standard algorithms. The construction of convex 
hulls is automated in many of the high-throughput DFT databases  
(for example, the Materials Project141, OQMD143 and AFLOWlib142).  

The convex hull also provides a simple, straightforward way to as-
sess the stability of new, predicted phases: their energies may be 
compared with those on the existing convex hull, and a phase is 
stable if its energy lies below; the convex hull and all its derivatives 
then must be updated to include the new, stable phase.

a b c

Increasing order of material system in phase diagrams

Material (node)

Composition

Ternary (3D) Quaternary (4D)

Tie-line (edge)

E
ne

rg
y

Binary (2D)

Convex hulls. a, Convex hull for a binary system, connecting the 
lowest-energy phases at each composition with tie-lines. b,c, Projections 
of the 3D (b) and 4D (c) convex hulls for a ternary or quaternary system 
on a Gibbs triangle or tetrahedron161. Credit: figure adapted with permission 
from ref. 161, under a Creative Commons License CC BY 4.0
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Outlook
As simulations can suggest novel materials, in addition to predicting 
novel properties of experimentally known materials, key challenges 
become the assessment of thermodynamic stability, synthesis condi-
tions, manufacturability and tolerance of the predicted properties to 
intrinsic and extrinsic defects. DFT estimates might ultimately need 
to be augmented by more advanced electronic-structure methods or 
machine learning algorithms to improve accuracy, and by seamless 
deployment of computational materials science methods to address 
realistic conditions—from vibrational entropies to defects’ concen-
trations to applied electrochemical potentials. Materials synthesis 
will be further driven by the freedom afforded by many combinato-
rial templates—from perovskites to half-Heuslers to metal–organic 
frameworks—with automated experiments and automated simu-
lations starting to handshake, and human or artificial intelligence 
deciding which experiment is required by a simulation, and which 
simulation is needed by an experiment.

On a more fundamental level, achieving predictive accuracy in 
the simulations and capturing the realistic complexity of materi-
als remain grand challenges. Not only magnetism or correlations 
push our ingenuity, but also ever-more-advanced experimental 
techniques test our capability to address time-resolved or ultrafast 
processes, to describe correctly the nano- and microstructure of 
materials, or to sample configurations and processes across length 
scales or timescales. Some of these latter capabilities are essential 
to understand synthesis, processing, manufacturing and ultimately 
failure. Last, simulations can make meaningful predictions only 
when the underlying theory is understood and coded, although 
there is also the possibility of observing unexpected behaviour 
emerging from interactions that are correctly captured, and for data 
mining pointing to unexpected correlations.

The sustained performance scaling in computing hardware and 
the emergence of disruptive accelerators for exponentially expensive 
tasks—such as neuromorphic and quantum computing—together 
with those driven by artificial intelligence that are already becoming 
established94,97 make for one easy prediction. Electronic-structure 
simulations will keep increasing their relevance and impact in 
accelerating, streamlining and focusing our efforts in materials 
design and discovery, delivering ever-more-complex capabilities 
for predicting and characterizing properties and performance, and 
addressing those, and those of the devices that are built out of them, 
in ever-more-realistic conditions and environments. This accelera-
tion mirrors the one of information-and-communication technolo-
gies, rather than that of physical infrastructures; is compounded by 
the novel ideas and algorithms that enter the field; and, at variance 
with physical infrastructure, can be instantaneously shared world-
wide. The impact of the field is already apparent in its acceptance 
and uptake by the experimental community, and in the remarkable 
predictions made—from ultrafast thermal transport163 to electron–
phonon mediated superconductivity in hydrides164 to the emergence 
of flat bands in twisted-bilayer graphene165—that have inspired even 
more remarkable experiments.

Against this background it is then very fitting to note that while 
physical infrastructures and major installations for research—from 
synchrotrons to radiotelescopes to supercomputers—are well estab-
lished, and rightly so, in our scientific society, the support and plan-
ning for the computational infrastructures, from the widely used 
scientific software31 that powers the research presented here, to 
the verification of codes and the validation of theories, to the dis-
semination and curation of computational data, tools and work-
flows, and the associated career models these entail and require are 
only just, belatedly, emerging. And users and beneficiaries of these 
capabilities now go well beyond core practitioners, underlying the 
importance of robustness and reliability in electronic-structure sim-
ulations, and education in their scope and limits—something this 
Review aims to contribute to.

We conclude by recalling that it is often said that human ages 
take their name from the materials that characterize them, and the 
computational design and discovery of novel materials, as enablers 
of the technologies that power our economy and sustain our society, 
will be be firmly at the centre stage for the coming decades. What to 
do with them will remain, for better or for worse, a human decision.
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