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The acclaimed Maxwell-Bloch (or Arecchi-Bonifacio) equations are a valid dynamical model, effectively
describing wave propagation in nonlinear optical media: from the amplification in input-output devices to mul-
timode instabilities arising in laser systems. However, the inherent spatial variability of the physical observables
represents an obstacle to fast simulations and analysis, especially whenever networks of active elements have
to be considered. In this paper, we propose an approach which, stripping the spatial dependence of its role as a
generator of dynamical richness, allows for a compelling simple portrait. It leads to (a few) ordinary differential
equations in input-output configurations, complemented by a time-delayed feedback in closed-loop setups. Such
a scheme reproduces accurately the dynamics, paving the way to a plain treatment of the wealth of phenomena
described by the Maxwell-Bloch equations.
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I. INTRODUCTION

Optical active media are the pillar of a large variety of
schemes and physical phenomena ranging from signal en-
hancement in detection setups [1] to regeneration of digital
transmissions in fibers [2] and chirped pulse amplification
[3]. By far, the most common setup based on active media is
the laser: using a cavity, the coherent amplification process
combined with the feedback mechanism produces a strong
emission of radiation with striking properties. Recently, lasing
networks (LANERs) have been introduced as generalization
of the laser [4], where different elements interact in a non-
trivial way to determine the overall dynamical properties.
At variance with standard networks often considered in the
literature, LANER links have their own dynamics, and the
complex character of the relevant observable (the field) is
responsible for fascinating interference phenomena [5,6]. The
number of physical media displaying coherent optical gain is
huge as well as the diversity of the underlying mechanisms
(see, e.g., Ref. [7]). Among others, of particular relevance
are semiconductor amplifiers [8] and erbium-doped fibers [9]
for their widespread applications in IT and communication
infrastructures. Despite this variety, a unique mathematical
model capturing most of the dynamical features of active
media has been available for many years: the Maxwell-Bloch
equations. Here, following Ref. [10], we prefer to refer to
them as the Arecchi-Bonifacio (AB) model [11]. The AB
equations are a semiclassical description, where the field is
treated classically; they have been derived in the so-called
slowly varying envelope approximation (i.e., after removing
the optical high frequencies). However, the AB model in-
volves partial differential equations; as such, it is difficult to
analyze and unsuitable in simulations of long active media and
in the characterization of setups composed of many elements.

In this paper, we propose an approach which allows sim-
plifying the model structure without losing the dynamical

complexity of the original problem. By adopting a Lagrangian
viewpoint, we rewrite the AB model in a moving frame. In
this representation, the spatial variation of the various fields
is a sheer, dynamically stable, amplification, described very
well by low-order polynomials. By expanding the fields into
(orthogonal) Legèndre polynomials, the AB model is mapped
onto a hierarchy of ODEs, complemented by suitable bound-
ary conditions. By retaining polynomials up to order n, one
obtains a spaceless model named SLn, involving the ampli-
tude of the n leading Legèndre modes of polarization and
population.

A preliminary application to an input-output setup (i.e. a
coherent optical amplifier) shows that already SL1 is able
to describe quite accurately the output temporal profile in
the presence of a strong and rapidly varying amplification.
However, the striking power of this approach emerges when
a closed-loop setup, such as the ring laser geometry, is con-
sidered. In this case, the input field is not externally given,
but determined self-consistently from the value of the output
at some previous time. As a result, the SLn models transform
into infinite-dimensional delayed equations. This is a crucial
difference with the standard Galerkin truncation, which leads
to a finite number of ODEs, and the higher the complexity of
the dynamics, the larger the number of modes to be retained.
Here, the possibly high-dimensional dynamics is the result of
delayed feedback, much easier to handle computationally. In
particular, we anticipate that SL1 alone is able to reproduce
quantitatively many properties of the AB model, from the
position of the second-laser threshold over a wide range of
relaxation time scales to the high-dimensional dynamics ob-
served for strong pump values, which would have otherwise
required very many Fourier modes in the standard formulation
of the AB model.

Additionally, SL1 proves to be superior to the phenomeno-
logical model proposed by Vladimirov and Turaev (VT) [12].
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Starting from first-principle considerations (the AB model)
and without invoking either the adiabatic elimination of vari-
ables or a not-so-well defined bandwidth, SL1 provides a
faster and more accurate description of semiconductor lasers.
Finally, we show that the success of our expansion in the
comoving frame can be traced back to the intrinsic stability
of the propagation along the active medium, the stability of
which is broken only by the (delayed) feedback.

II. ARECCHI-BONIFACIO MODEL

The starting model is the set of AB equations, whose va-
lidity is related to the accuracy of the so-called slowly varying
envelope approximation, very well satisfied in the range of
optical frequencies. We refer to the formulation considered in
Refs. [13–16] and many other publications,

∂zF + ∂τ F = a(1 − iα)P,

∂τ P = γ⊥[DF − (1 + i�̃)P], (1)

∂τ D = γ‖[1 − D − Re(FP∗)],

where F denotes the electric field, propagating along an active
medium of length L; P(z, τ ) represents the atomic polariza-
tion, while D(z, τ ) is the population inversion. Moreover, a
is the pump parameter, γ‖ and γ⊥ denote the decay rate of
the population and polarization, respectively; c is the speed of
light and �̃ is the detuning; finally, the linewidth enhancement
factor α [17] allows treating also semiconductor media. The
model evolution requires knowledge of the input field F (0, τ )
for τ � 0 and of the initial condition P(z, 0), D(z, 0) for
0 � z � L.

It is worth mentioning, however, that sometimes explicit
field losses can be included in the model, in the form of an
additional term −κF to the right-hand side of the first Eq. (1)
(this is not to be confused with the cavity losses resulting
from the boundary conditions in closed-loop configurations).
For simplicity, we prefer not to include such a term in this
study. In Sec. VI, we shortly comment on how it can be easily
incorporated.

By rescaling and shifting the spatial variable y = 2z/L −
1, so that y ∈ [−1, 1], and introducing the moving frame t =
τγ⊥ + γ⊥(L − z)/c (the origin of τ coincides with that of t at
the end of the active medium), we obtain

∂yF = ξ

2
P, (2)

∂tP = DF − (1 + i�̃)P, (3)

∂tD = γ [1 − D − Re(FP∗)], (4)

where {F ,P,D} are functions of (y, t ), and F (−1, t ) =
F (0, t/γ⊥ − L/c) ≡ Fa(t − T ), where T = (Lγ⊥)/c is the
travel time along the active medium. Moreover, γ = γ‖/γ⊥,
and ξ = j(1 − iα), with j = aL. This shows that the spatial
variation of the various fields depends on aL irrespective
of the specific value of the two factors, showing that the
thin-medium limit is not well posed. The physical length L
contributes “only” to an irrelevant (in this context) time shift
between the input and output signals.

. .

.

.

.

.

FIG. 1. Active medium response to the periodic signal Fa =
exp[2 sin(2πt/15)] (light gray curve), for �̃ = 0, γ = 0.1, and
j = 4. As α = 0, the field F is real with amplitude A = |F | = F .
(a) Output field amplitude Fb(t ) = F (1, t ) obtained from the inte-
gration of Eqs. (2)–(4) (black thick curve), SL1 (blue dot-dashed
curve), SL2 (green dashed curve), and SL3 (red curve) models. In
the side panel, amplitude differences δA between the AB and SLn
models are evaluated in the boxed region. (b) �F (see text) taken
at the times depicted by the vertical lines in panel (a). (c) Legèndre
spectrum.

We first consider an active medium fed by a periodically
modulated real signal (see Fig. 1); the parameters have been
selected so as to have strong nonlinear effects. The output field
of the AB model is reported in panel (a), where one can notice
the qualitatively different shape of the output with respect
to the modulation. In panel (b), we plot the field variation
�F (y, t ) = F (y, t ) − F (−1, t ) along the active medium at
three different times t . Notably, all profiles show a smooth,
monotonic increase: (i) tiny for a small input field (dot-
dashed); (ii) larger for intermediate input fields (dotted curve);
(iii) affected by saturation for yet larger amplitudes (dashed
curve).

III. PROJECTING THE AB MODEL ON
THE LEGÈNDRE BASIS

So long as this smooth dependence holds at all times, the
profiles can be effectively expanded in terms of low-order
polynomials. We have decided to use Legèndre polynomials
(LP) [18], which, being orthogonal, are a proper basis for
the projection of generic functions over a finite interval. A
similar idea has been proposed in the different context of
stationary linear propagation along nonuniform media [19].
Given a generic time-dependent field H(y, t ), and denoting
with Nn(y) the Legèndre polynomial of order n defined in the
interval [−1, 1] [20],

H̃n(t ) =
∫ 1

−1
H(y, t )Nn(y) dy (5)

identifies the instantaneous nth Legèndre component. We can
then define the Legèndre spectrum h̃n =

√
〈H̃2

n(t )〉, where the
angular brackets denote a time average. The spectrum of the
field F for the periodic modulation of Fig. 1(a) is reported
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in panel (c). It reveals a nearly exponential decrease, which
confirms the insignificance of higher-order polynomials and
suggests it is worth expanding Eqs. (2)–(4) into LPs.

By representing the polarization and population as

P (y, t ) =
∑
n=0

pn(t )Nn(y), D(y, t ) =
∑
n=0

dn(t )Nn(y), (6)

the field [the integral of P as from Eq. (2)] can be expressed
as

F (y, t ) = Fa(t ) + 1

2
ξ

∑
n=0

pn(t )Nn(y), (7)

where Fa(t ) = F (−1, t ) is the field at the beginning of the
active medium, while Nn(y) = ∫ y

−1 Nn(z) dz . Using Bonnet’s
recursive formula [18], Nn can be expressed in terms of LPs,
thereby obtaining an explicit expression for F (y, t ). Once the
expansions of F , P , and D are given, we can insert them into
Eqs. (3) and (4) and project the resulting ODEs onto the LP
basis. The products DF and FP∗ generate terms of the type
Nm(y)Nn(y), which can be expressed as a linear combination
of the Nk (y) polynomials with k � m + n [21,22].

The details of the procedure are presented in the Ap-
pendix. Here, we limit ourselves to illustrating the derivation
of the lowest-order model. Since N0(y) = 1/

√
2 and N1(y) =√

3/2y, then N0 = N0 + N1/
√

3, so that F (y, t ) = Fa(t ) +
1
2ξ p0(t )(y + 1). Moreover, since N0Nn = Nn/

√
2, one obtains

ṗ0 = −(1 + i�̃)p0 + d0(Fa + ξ p0/2), (8)

ḋ0 = γ [1 − d0 − Re(Fa p∗
0 + ξ |p0|2/2)]. (9)

Finally, the field at the end of the active medium is (at any
order)

Fb(t ) ≡ F (1, t ) = Fa(t ) + ξ p0(t ), (10)

where Fa(t ) refers to the time (t − T ) in the laboratory frame.
This model is implicitly based on the assumption of a linear
field profile; for this reason we shall refer to it as to SL1.
More in general, SLn involves 3n differential equations (for n
real modes representing the population and n complex modes
describing the polarization).

In Fig. 1(a) we report the outcome of SL1-SL3 and show
the corresponding difference with the AB equations in the
inset. SL1 is already able to capture the qualitative behavior
of the output field, including the double peak. An increasingly
better agreement is ensured by the higher-order models.

IV. RING LASER CASE

We now turn our attention to closed-loop setups, where
the input field is determined self-consistently. More precisely
we consider ring lasers [23] with unidirectional propagation.
They have been the subject of many studies: to identify the
so-called second laser threshold [24–26]; to perform accurate
stability analyses [13,14]; to derive amplitude equations [27];
to perform nonstandard adiabatic elimination wherever appro-
priate [15,28], or to study temporal localized states [12,29].
The abundance of results makes the ring laser an optimal
testing ground for our approach.

In a ring laser, Fa(t ) = RFb(t − Tr ), where R is the reflec-
tivity of the mirror(s), while Tr = T + Tf is the round-trip

.

.

FIG. 2. Second laser threshold for a ring laser with α = 0.
(a) Critical pump value and (b) corresponding frequency. Data refer
to R = 0.95 in the limit of a long delay (see text). Solid curve:
solution of the analytic expressions of [14]; dots: numerical solution
of the RL1 model.

time, Tf being the free propagation time from the end of
the active medium back to the origin. A similar model was
proposed by Milonni et al. [30], who derived their equations
under the thin-medium approximation: an ill-posed assump-
tion since we have seen that the spatial dependence cannot
be controlled by the physical length alone, once the pump
parameter ξ is given.

The ring condition has turned the original set of ordinary
equations into a delayed equation, known to be infinite dimen-
sional [31–34]. This property is crucial since it allows for SL1
reproducing the richness of the original AB model, in spite of
its low computational complexity.

The model structure is better appreciated by eliminating Fa

from Eqs. (8) and (9) with the help of Eq. (10). As a result, we
obtain the first order, ring laser (RL1) model

Fb(t ) = RFb(t − Tr ) + ξ p0(t ), (11)

ṗ0 = −(1 + i�̃)p0 + d0(Fb − ξ p0/2), (12)

ḋ0 = γ [1 − d0 − Re(Fb p∗
0 − ξ |p0|2/2)]. (13)

We now test the ring-laser dynamics by determining the
second laser threshold, where the stationary state destabilizes.
An analytic characteristic equation is available for the lin-
earized AB system when α = 0 [14]. The numerical solution
of such an equation is plotted in Fig. 2 for R = 0.95. The
threshold values jθ and the corresponding frequency of the
leading unstable mode are shown as solid curves in Figs. 2(a)
and 2(b), for a broad range of γ values. The full circles in
the same figure have been obtained by numerically integrating
the RL1 model. We have used a long delay (Tr = 200–800)
in order to better resolve the critical point thanks to the high
modal density [31–33]. The error bars are due to the difficulty
of discriminating whether perturbations do grow or converge
to zero in the vicinity of the bifurcation. As seen in the figure,

053521-3



GIACOMELLI, YANCHUK, AND POLITI PHYSICAL REVIEW A 104, 053521 (2021)

FIG. 3. Comparison of RL1 and AB models for a semiconductor
medium (α = 5) well beyond the second threshold. Here, j = 2.5,
Tr = 200, and γ = 10−3. (a) Legèndre spectrum from the AB inte-
gration. (b) Modulus of the power spectrum of the field amplitude
A = |F | (field is now complex): AB (solid black lines) versus SL1
(red dots); inset: zoom of the first peak. Poincaré sections of succes-
sive maxima of A for AB (c) and RL1 (d) model.

the agreement is excellent already using the lowest order of
approximation.

Then, we have considered the semiconductor setup (α = 5)
to test a different system and to compare with a preexisting de-
layed model proposed to characterize small-γ devices, where
the polarization has been adiabatically eliminated: the VT
model [12]. Using the notations of this paper, the VT model
can be written as Ḟb = −Fb + R eξGFb(t − Tr ) plus Ġ =
γ̄ [1 − G + (1 − e2 jG )|Fb(t − Tr )|2], where G is the spatial in-
tegral of the population inversion and γ̄ is a phenomenological
parameter playing a role similar to γ . For R = 0.95, Tr = 200,
and γ = 10−3, both the AB and RL1 models reveal that sta-
tionary states lose stability above a critical amplification jθ ,
approximately equal to 0.25 and 0.17, respectively. On the
other hand, the integration of the VT model does not reveal
any destabilization up to j = 5 for a range of γ̄ values from
10−2 to 10−4. We are led to conclude that our RL1 model is
more accurate than VT, at least in the considered setup [35].

Finally, we have made a more stringent test, simulating
the laser significantly above threshold, where the dynamics
is irregular. In Fig. 3(a), we report the Legèndre spectrum
obtained by integrating the AB equations. Analogous to the
open loop setup, we observe a clean fast exponential decay:
a strong hint that our approach is going to work. In panel
(b) we superpose the Fourier amplitude of the field dynamics
obtained from the AB equation (solid line) with the peaks of
the spectrum obtained from the RL1 model: the agreement is
remarkable. Since the Fourier spectrum does not contain in-
formation on the phases, we have also constructed a Poincaré
section from the maxima of the field amplitude. The results
from the AB model are presented in panel (c) to be compared
with the outcome of the RL1 model, presented in panel (d).

This comparison confirms the validity of the approximate
model.

V. MODAL EXPANSION AND GENERALIZED
SYNCHRONIZATION

We lastly discuss the origin of the success of the modal
expansion, starting from the response of an active medium to
a generic time-dependent field Fa. According to Eqs. (2)–(4),
the medium can be seen as a series of identical slices along the
y direction, each slice being modulated by a field, made of two
components F (y, t ) = Fa(t ) + �F (y, t ), where �F is the
integral of the polarization for x � y. The unidirectionality of
the coupling implies that the overall dynamics can be assessed
by separately looking at the single slices for fixed y. For a
fixed slice (fixed y) and given F (y, t ), the polarization P (y, t )
and the population D(y, t ) follow a linear dynamics (3) and
(4), and can therefore be treated analytically. In particular,
the positive-definite observable L = γ |P|2 + D2 is a proper
Lyapunov function [36,37] for the homogeneous part of the
equations (3) and (4)

L̇ = −2γ (|P|2 + D2) � −2γmL, (14)

where γm = min{γ , 1}. The inequality (14) can be proven
by direct substitution. The derivative of L is negative and
uniformly bounded, indicating an exponential decay to zero.

Hence dynamical degrees corresponding to the variables
P and D do not contribute to the active dynamical degrees
of the spatially extended active medium. More precisely, the
Lyapunov function (14) implies that, at any given slice y, the
polarization P and population D are synchronized in a gener-
alized sense [38–41] to a given field F (y, t ). The property of
the generalized synchronization implies that the polarization
and population variables are uniquely determined by the field
variable, and no additional active degrees of freedom emerge.
As a result, the instabilities arising in closed-loop configu-
rations are entirely due to the delayed feedback. Herein lies
the superiority of our approach: convective instabilities arising
in the original formulation [see Eq. (1)] are converted into a
delayed-induced instability, accompanied by a spatial stabil-
ity. This is not a surprise in the long delay limit, as it is well
known that delay may induce “convective” instabilities [42],
but it is true also in the short delay limit, when the ring con-
dition reduces to an ODE, Ḟb = [−(1 − R)Fb + ξ p0]/(RTr ).
Indeed, this equation, accompanied by Eqs. (8) and (9),
coincides with the Lorenz-Haken model [43,44] under the
additional approximation of negligible ξ terms in Eqs. (8) and
(9) (typically valid in the so-called uniform field limit).

VI. SUMMARY

In this paper, we have introduced an effective approach
which simplifies the treatment of optical active media by
eliminating the spatial dependence. The method proves to be
very accurate and fast to simulate, while retaining the richness
of the full AB model.

We have neglected explicit field losses, but they can be
easily accounted for by including a linear term in Eq. (2)
and thereby modifying the expansion (7). It is important,
moreover, to stress that, while the length of the medium is
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a meaningless concept in the absence of propagation losses, it
becomes important when they are included.

We have also assumed a constant (in space) pump a, but
one can easily include nonuniformities so long as the pump
profile can be effectively expanded into Legèndre polynomi-
als. The additional complexity would be equivalent to that
of the quadratic nonlinearities already present in the original
equations.

An interesting question concerns the number of modes
to be accounted for. We have seen that already the simplest
model is able to reproduce the expected dynamics in a wide
range of physical conditions. This includes semiconductor
ring lasers, where it proves superior to the VT model (it will
be, nevertheless, worth including a saturable absorber in our
model to perform a more compelling test). We envisage that
higher-order polynomials might be required in the presence of
a large pump in a bad cavity limit [45], because of the strong
amplification across the active medium.

Finally, bidirectional propagation is perhaps the most in-
teresting challenge. The elimination of spatial propagation in
ultrathin media proposed in Ref. [16] seems to be a useful
starting point.
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APPENDIX: PROJECTING THE ARECCHI-BONIFACIO
EQUATIONS ON A LEGÈNDRE BASIS

Here, we introduce the relationships required to derive the
evolution equations at any prescribed order. Most of them are
known formulas, herewith recalled to help the reader. The
third-order equations (model SL3) are finally presented to
exemplify the outcome of the procedure.

1. Legendre polynomial basis definition

In the scientific literature, the Legèndre polynomials Qn(y)
are defined as an orthogonal basis on the interval [−1, 1] (see,
e.g., Ref. [18]). Here we prefer to refer to the orthonormal
polynomials Nn(y),∫ 1

−1
Nn(y)Nm(y) dy = δnm. (A1)

The two sets of polynomials differ only by a scaling factor,

Nn(y) =
√

2n + 1

2
Qn(y). (A2)

In particular,

N0(y) = 1√
2
, N1(y) =

√
3

2
y,

N2(y) = 1

2

√
5

2
(3y2 − 1),

N3(y) = 1

2

√
7

2
(5y3 − 3y), . . . . (A3)

2. Integral of Legendre polynomials

One of the key expressions required to expand the AB
model concerns the spatial integration of the polynomials,

Nn(y) =
∫ y

−1
Nn(z) dz =

√
2n + 1

2
Qn(y). (A4)

It is known that the Qn polynomials satisfy the differential
equation [18]

d

dy
[(1 − y2)Qn(y)] + n(n + 1)Qn(y) = 0. (A5)

Hence

Qn(y) = y2 − 1

n(n + 1)

dQn(y)

dy
. (A6)

Next, recalling that [18]

y2 − 1

n

dQn(y)

dy
= yQn(y) − Qn−1(y), (A7)

we obtain

Qn(y) = yQn(y) − Qn−1(y)

n + 1
. (A8)

Bonnet’s relationship [18] (valid for n > 0) allows for remov-
ing the explicit y dependence,

yQn(y) = n

2n + 1
Qn−1(y) + n + 1

2n + 1
Qn+1(y). (A9)

In fact, by inserting Eq. (A9) into Eq. (A8), we obtain

Qn(y) = Qn+1 − Qn−1

2n + 1
. (A10)

Finally, referring to the orthonormal polynomials

Nn(y) = 1√
2n + 1

[
Nn+1(y)√

2n + 3
− Nn−1(y)√

2n − 1

]
. (A11)

The first integral (n = 0) must be computed directly

N0(y) = 1√
3

N1(y) + N0(y). (A12)

The other integrals are thereby recursively obtained from
Eq. (A11), starting from

N1(y) = 1

2

√
3

2
(y2 − 1) = 1√

15
N2(y) − 1√

3
N0(y). (A13)

3. Projection of nonlinear terms

In order to project the nonlinear terms present in the polar-
ization and population equations, it is necessary to express the
product of two Legèndre polynomials in terms of Legèndre
polynomials themselves. A general formula was given in 1878
independently by Neumann [21] and Adams [22], and proved
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later, e.g., by Salam [46],

Qp(x)Qq(x) =
q∑

r=0

ArAp−rAq−r

Ap+q−r

2p + 2q − 4r + 1

2p + 2q − 2r + 1
Qp+q−2r (x), (A14)

with

p � q, Ar =
(

1
2

)
r

r!
, (a)r = a(a + 1) . . . (a + r − 1), (a)0 = 1 .

By normalizing, we obtain the required expression,

Np(x)Nq(x) =
√

(2p + 1)(2q + 1)

2
[
2(p + q − 2r) + 1

] q∑
r=0

ArAp−rAq−r

Ap+q−r

2p + 2q − 4r + 1

2p + 2q − 2r + 1
Np+q−2r (x). (A15)

4. Evolution equations

By using the general relationships given in the previous section, it is possible to obtain approximate models by truncating
the hierarchy of equations at the desired order. Here we derive SL3. For the sake of completeness and clarity, the amplification
factor is expressed explicitly in terms of the pump j0 and Henry’s α factor, ξ = j0(1 − iα). The equations are

ṗ0 = −(1 + i�̃)p0 + Fad0 + j0
2

(1 − iα)

(
d0 p0 − 1

3
d0 p1 + 1

3
d1 p0− 1

15
d1 p2 + 1

15
d2 p1

)
,

ṗ1 = −(1 + i�̃)p1 + Fad1 + j0
2

(1 − iα)

(
d0 p0 + d1 p0 − 1

5
d1 p1−1

5
d0 p2 + 2

5
d2 p0 − 1

35
d2 p2

)
,

ṗ2 = −(1 + i�̃)p2 + Fad2 + j0
2

(1 − iα)

(
1

3
d0 p1 + 2

3
d1 p0 + d2 p0 − 1

21
d1 p2 − 5

21
d2 p1

)
,

ḋ0 = γ
[
1 − d0 − Re(Fa p0) − j0

2
|p0|2 − α j0

3
Im(p0 p1)−α j0

15
Im(p1 p2)

]
,

ḋ1 = γ

[
−d1 − Re(Fa p1) + j0

2

(
−|p0|2 − Re[(1 + iα)p1 p0] + 1

5
|p1|2+ 1

35
|p2|2 − 1

5
Re[(1 − 3iα)p0 p2]

)]
,

ḋ2 = γ

[
−d2 − Re(Fa p2) + j0

2

(
−1

3
Re[(3 − iα)p0 p1] − Re[(1 − iα)p0 p2] + 2

21
Re[(3 − 2iα)p1 p2]

)]
.

The instantaneous field profile is

F (y) = Fa + j0
2

(1 − iα)
[

p0(1 + y) + p1

2
(y2 − 1)+ p2

2
(y3 − y)

]
.

Typically, one is interested in the field amplitude at the end of the active medium,

Fb = F (1) = Fa + j0(1 − iα)p0,

which depends only on the input field and the zeroth polarization mode. This is true at any order, since all Legèndre polynomial
have zero average, except for N0(y).

By omitting the terms (and related equations) containing the variables p2 and d2, one obtains SL2, the model of order 2.
SL1, defined by Eq. (7), can be obtained from the above equations by omitting all terms containing p1, p2, d1, d2 and their
corresponding equations.

Finally, note that the truncated models possess the following general form:

ṗ = −(1 + i�̃)p + Fad + j0(1 − iα)B1(d, p),

ḋ = γ [e0 − d − Re(Fa p) + j0B2(p, p)],

where p = (p1, . . . , pM )T , d = (d1, . . . , dM )T , and e0 = (1, 0, . . . , 0)T , while B1 and B2 are bilinear forms and M is the
truncation order.
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