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The replication (replicability, reproducibility) crisis in social psychology and clinical medicine
arises from the fact that many apparently well-confirmed experimental results are subsequently
overturned by studies that aim to replicate the original study. The culprit is widely held to be
poor science: questionable research practices, failure to publish negative results, bad incen-
tives, and even fraud. In this article I argue that the high rate of failed replications is consistent
with high-quality science. We would expect this outcome if the field of science in question
produces a high proportion of false hypotheses prior to testing. If most of the hypotheses under
test are false, then there will be many false hypotheses that are apparently supported by the
outcomes of well conducted experiments and null hypothesis significance tests with a type-
I error rate (a) of 5%. Failure to recognize this is to commit the fallacy of ignoring the base
rate. I argue that this is a plausible diagnosis of the replication crisis and examine what lessons
we thereby learn for the future conduct of science.
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1. Introduction

Psychology and clinical medical science are alleged to suffer from a crisis. In many

cases replications of scientific studies purporting to show the existence of certain ef-

fects have failed to find those effects or have found effects only of rather smaller size.

Many scientists consequently believe that these sciences are suffering from a crisis,

and point to problems such as ‘questionable research practices’ and publication bias

to explain how this crisis arose. This article provides a different explanation for how

the replication (replicability, reproducibility) crisis came to be. I argue that the fail-

ure of replication should not be regarded as unexpected. Rather the surprise at the

number of failed replications and consequent sense of crisis are a result of the fallacy

of neglecting the base rate.

In some sciences a high rate of false hypotheses is to be expected. It is not easy to

think up correct hypotheses, particularly in fields such as biomedicine. Basic re-

search may suggest links between possible interventions and clinical outcomes.
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But our incomplete knowledge of the complex systems involvedmeans that one can-

not have a high confidence in the correctness of a hypothetical link in advance of

clinical trials. So, even if the experimental science that tests the hypotheses is high

quality, the high base rate of falsity will show up as a significant proportion of false

positives among all the positive results. The replication crisis is complex and poly-

genic—there are several factors the contribute to it independently. Although the ex-

planation I give is not the only cause of the crisis, it is a significant one. And it is

important that it is recognized. First, because it is harmful that a failed replication

should immediately be regarded as casting aspersions on the competence and pro-

bity of the original scientists. And secondly, because it must be understood that even if

the other factors, such as poor research practices, are addressed and eliminated, the

problem of irreproducible research may thereby be reduced but it will not go away.

In the light of this result, three approaches to the ‘crisis’ suggest themselves: (i)

Accept that this is the nature of these sciences at their current stage of development,

and adjust one’s credence in published results accordingly. (ii) Seek means of gen-

erating research hypotheses that are more likely to be true. (iii) Require that the ex-

perimental research be of even higher quality, in particular by requiring a rather lower

a than the 0.05 currently regarded as acceptable.
1.1. The replication crisis

In certain fields of science, principally social psychology and clinical biomedicine,

results that seemed to show certain effects are frequently overturned by subsequent

experiments and tests that seek to replicate the original outcome. Often effects that

appeared to be firmly established are just not there or are rather weaker than first sup-

posed. The term ‘replication crisis’ (or ‘replicability crisis’ or ‘reproducibility cri-

sis’) is used to describe both the fact that there is this high level of failure to replicate

and the sense that these fields face a crisis as a consequence. 52% of 1,576 scientists

taking a survey conducted by the journalNature agreed that there is a significant cri-

sis of reproducibility (Baker [2016]).1 One social psychologist expresses his con-

cerns thus: ‘Our problems are not small and they will not be remedied by small fixes.

Our problems are systemic and they are at the core of how we conduct our science’.2

One reason for anxiety about the crisis, or about talk of a crisis, is that it might

accelerate the decline in public trust in science. While trust in scientists remains high

in the UK, it has fallen, according to a poll carried out in 2015, by 4% in the preced-

ing year.3 In the US trust in scientists is lower than trust in the military (Funk and
1 This article in the Atlantic entitled ‘Psychology’s Replication Crisis Can’t Be Wished Away’ gives a
good sense of the angst being generated and how it is reported in public: <www.theatlantic.com/sci
ence/archive/2016/03/psychologys-replication-crisis-cant-be-wished-away/472272/>.

2 Inzlicht ‘Reckoning with the Past’, available at <michaelinzlicht.com/getting-better/2016/2/29/reckon
ing-with-the-past>.

3 <www.ipsos-mori.com/researchpublications/researcharchive/3685/Politicians-are-still-trusted-less-than
-estate-agents-journalists-and-bankers.aspx>.

http://www.theatlantic.com/science/archive/2016/03/psychologys-replication-crisis-cant-be-wished-away/472272/
http://www.theatlantic.com/science/archive/2016/03/psychologys-replication-crisis-cant-be-wished-away/472272/
http://michaelinzlicht.com/getting-better/2016/2/29/reckoning-with-the-past
http://michaelinzlicht.com/getting-better/2016/2/29/reckoning-with-the-past
http://www.ipsos-mori.com/researchpublications/researcharchive/3685/Politicians-are-still-trusted-less-than-estate-agents-journalists-and-bankers.aspx
http://www.ipsos-mori.com/researchpublications/researcharchive/3685/Politicians-are-still-trusted-less-than-estate-agents-journalists-and-bankers.aspx
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Kennedy [2016]). A particularworry is that the crisis of replicationmay fuel distrust in

science that is far removed from those areas in which the crisis arises. For example, an

article in Investor’s Business Daily entitled ‘Memo to Global Warming Alarmists:

Science Is Often Wrong’ refers to an article that discusses replication failures.4

Begley and Ellis ([2012]) report that scientists fromAmgen, the biotech company,

tried to replicate fifty-three studies in oncology and related fields over a ten-year pe-

riod. Of these only six (11%) were satisfactorily replicated. Another study (Ioannidis

[2005a]) considered all the most highly cited clinical research studies published in

three leading medical journals, and looked to see whether there were subsequent

studies of the same hypotheses that were larger or better controlled. Forty-five such

studies claimed an effective intervention. 16% of these were contradicted by the

later studies, while in another 16% the effect was found to be smaller in the later than

in the earlier study. 44% were replicated and the results of the remaining 24% of

studies went largely unchallenged.

A number of very significant results in psychology have failed attempts at replica-

tion. One very well-known and influential result in social psychology (Bateson et al.

[2006]) says that an image of a pair of eyes watching a subject will tend to increase

their socially co-operative behaviour, such as the amount the subject pays into an hon-

esty box for tea and coffee. But a larger study (Carbon andHesslinger [2011]) failed to

find the same effect. Another commonplace of social psychology is that babies are

born imitators.Yet thiswidely accepted claimhas also been subjected to serious doubt

by a high-quality study (Oostenbroek et al. [2016]), which found that babies were no

more likely to stick out their tongues when the researcher was sticking her tongue out

than when the researcher was making some other facial display to the baby. Various

priming effects, whereby exposure to certain cues can influence attitudes and behav-

iour, have also been difficult to replicate (Doyen et al. [2012]; Klein et al. [2014]).

One interesting piece of research (Carney et al. [2010]) that has received a lot of pub-

licity maintained that adopting high-power poses causes increased feelings of power

and tolerance to risk, alongside changes in biomarkers (raised testosterone and low-

ered cortisol). A much larger study (Ranehill et al. [2015]) replicated the increased

self-reported feelings of power, but did not find any behavioural change (for example,

regarding risk-taking), nor any change in the biomarkers. Even effects as central to

psychology as ego depletion and stereotype threat have come under suspicion as a re-

sult of failed replications (Flore and Wicherts [2015]; Hagger et al. [2016]).
1.2. The base rate fallacy

The base rate fallacy is liable to occur when making an inference regarding the prob-

ability of some particular occurrence of a general phenomenon (for example, whether

an individual has a disease). The fallacy arises when the reasoner focuses solely on
4 <www.investors.com/politics/commentary/do-not-trust-climate-science-scientists-wrong-all-the-time/>.

http://www.investors.com/politics/commentary/do-not-trust-climate-science-scientists-wrong-all-the-time/
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some salient piece of evidence regarding that occurrence while neglecting the rate at

which occurrences of that phenomenon would occur independently of that evidence

(the base rate). This leads to erroneous conclusions when the evidence is strongly but

imperfectly correlated with the occurrence (for example, when the evidence is some

kind of test for the phenomenon) and the phenomenon itself is rare. In a well-used

example, a profiling tool might scan airline passengers for appearance and behaviour

that is indicative of being a terrorist. The test might be a good test in that it is accurate

in 95% of cases. That is, of every 100 non-terrorists, it says that 95 are not terrorists

and 5 are terrorists, and of every 100 terrorists it says that 95 are terrorists and 5 are

not terrorists. So, if a passenger fails the test—it says he is a terrorist, what is the

chance that he is a terrorist? Certainly not 95%. The chances are in fact miniscule.

For the number of terrorists is tiny compared to the number of ordinary air passen-

gers. So if a passenger fails the test it is far, far more likely that he is an innocent

passenger who is a victim of the 5% failure rate of the test then he is a genuine ter-

rorist accurately caught by the test.5

The evidence is strong that people are prone to neglect the base rate and so make

fallacious inferences, such as inferring that the passenger is likely to be a terrorist. In

a famous experiment (Casscells et al. [1978]) medical students at Harvard were

asked to say how likely it was that a patient (without other indications or risk factors)

who tested positive for a rare disease in fact has the disease. The students were told

that the disease is found in 1 in 1000 patients and that the test is 95% accurate. Al-

most half the students said that the probability that the patient has the disease is 95%.

In fact, the probability is less than 2%—only eleven of the sixty students got this cor-

rect answer.

We can see why the right answer is approximately 2% as follows: Let p be the

probability that S has the disease, independently of the test result; and so the prob-

ability that S does not have the disease is 1 2 p. Let r be the accuracy of the test; so

the probability of the test yielding an inaccurate result is 1 2 r. See Table 1 for the

various probabilities.

(Note that in this example, as in the terrorist detection case, what we have called

‘accuracy’ in fact covers two kinds of accuracy: the probability that someone with

the disease tests positive and the probability that someone without the disease tests

negative. For many tests these will in fact be different and I will differentiate them

later in the discussion.)

What we want to know is:

PrðS has the disease, given that S tests positiveÞ:
5 Similar criticisms may be made of other screening programmes for rare outcomes, such as the UK’s pro-
gramme for screening travellers for Ebola (see Evans’s comments at <itsastatlife.blogspot.co.uk/2014/10
/ebola-hunting.html#more>. As far as I can tell Evans was right in his prediction. In the UK the programme
identified 367 people as ‘high risk’ and a further 19 were referred to the NHS. None of these had Ebola.

http://itsastatlife.blogspot.co.uk/2014/10/ebola-hunting.html#more
http://itsastatlife.blogspot.co.uk/2014/10/ebola-hunting.html#more
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This is equal to:

Pr(S has the disease and S tests positive)

Pr(S tests positive)
:

The denominator, Pr(S tests positive), is equal to: (Pr(S has the disease and S tests

positive)1 Pr(S does not have the disease and S tests positive)). So, using Table 1:

Pr(S has the disease, given that S tests positive) 5
pr

pr 1 (1 2 p)(1 2 r)
:

We can plug in the values given in the Harvard study: p 5 0.001 and r 5 0.95.

Which gives:

Pr(S has the disease, given that S tests positive) 5 0:019 5 1:9%:

This result shows that although the test is highly accurate (95%), the probability that

a positive test correctly indicates a case of the disease is very low (<2%). The reason

for this is the fact that the disease is very rare, so a positive test is muchmore likely to

arise from a non-diseased case giving a false positive than from a diseased case giv-

ing a true positive.
2. From the Base Rate Fallacy to the Replication Crisis

This section connects the two preceding sections by showing how the large number

of failed replications can be explained by reference to a high base rate of falsity

among the hypotheses tested. The sense of ‘crisis’ arises, I suggest, from the fallacy

of ignoring this base rate. In what follows I assume that the scientists in question are

concerned with scientific research hypotheses that are usually causal in form. For

example, a research hypothesis may state that a new drug will bring about a reduc-

tion in blood pressure for a particular cohort of patients. Or it might state that certain

stimuli will cause subjects to recall a certain type of fact more quickly. Scientists

have standardmeans of testing such hypotheses. Such tests are imperfect, in that they

can produce false positives (false hypotheses that are accepted as true) and false neg-

atives (true hypotheses that are accepted as false). For example, hypotheses of these

kinds will typically be tested with a randomized controlled trial (RCT) whose results

are analysed by null hypothesis significance testing (NHST), with the significance

level set at 5%. That is, patients or subjects will be randomly allocated to a control
Table 1. Probability that a patient has a disease found in 1
in 1000 patients

Has disease Has no disease

Tests positive pr (1 2 p)(1 2 r)
Tests negative p(1 2 r) (1 2 p)r
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group and an experimental group and the difference in outcome is measured. A sta-

tistical null hypothesis is formed, stating that there is no baseline difference in out-

come between the two groups. Using NHST we calculate the probability that we

would see the observed difference in outcome (or a larger one) if the null hypothesis

is true. If that probability is less than 5%, the null hypothesis is rejected. Correspond-

ingly, the research hypothesis is accepted—it will be published as a statistically sig-

nificant outcome. Setting the significance level at 5% means that if the null hypoth-

esis is true, then there is a 5% probability of falsely rejecting it. This method of

hypothesis testing (RCT plus NHST plus a 5% significance level) is only 95% accu-

rate in this respect—it accepts a false positive rate of 5%.6

Consider the mad scientist Dr M who has many crazy ideas. He pursues wild hy-

potheses, only 1 in 1000 of which is true. (He may be influenced by Popper’s exhor-

tation to devise hypotheses that are bold.)7 However, he is a responsible enough sci-

entist to test his hypotheses using accurate methods, properly conducted, to the

standards expected by the scientific community. For example, he may employ RCTs

with NHST, with the significance level set at 5%. Let us assume then that his test

method is 95% accurate in declaring that a true hypothesis is true and that false hy-

pothesis is false. Given that a test says that one of DrM’s theories is true, what in fact

are the chances of its being true? This case is exactly analogous to the disease case.

Instead of a case of a disease we have a true hypothesis, and instead of a test for the

disease we have a test for truth. We can conclude that the theory’s probability of

bring true is only 2%.

Now consider Prof. S. She is entirely sane, but works in a new and difficult area

where there is little solid background theory or reliable results to guide her hypoth-

esis formation. Rather she uses her scientist’s intuition or analogies with other ideas

and results to generate hypotheses that she then submits to careful scrutiny. Let it be

that 10% of the hypotheses she forms are true. And as before, assume that her test

methods are 95% accurate. We can now draw up Table 2 and calculate the probability

that one of Prof. S's hypotheses, chosen at random, is true if the test says it is true—

which is 0.68.
6 Some commentators assert that ‘the null hypothesis, taken literally, is always false’ (Meehl [1978],
p. 822; see also Cohen [1990], p. 1308). In which case, we cannot usefully talk of the probability of falsely
rejecting it. Cohen’s example of a null hypothesis is ‘The difference in the mean scores of US men and
women on an attitude toward the UN scale is zero’. Regarding such cases where we are comparing two
distinct actual groups in a population, Cohen is surely right. Matters are more contentious, however,
when the study uses an RCT (Hagen [1997]; Lakens [2014]). And Meehl ([1990], p. 204) himself notes
the equivalent claim that ‘everything correlates to some extent with everything else’ is not true for pure
experimental studies (such as an RCT). In any case, for our purposes, we need only note two things. First,
that the negations of the scientific research hypotheses, the ‘causal null hypotheses’, so to speak, that as-
sert that there is no causation between one factor and another, are not always false and are very frequently
true. And secondly, that using this method to test them will generate a false rejection of the scientific null
and so an incorrect acceptance of the positive research hypothesis in 5% of cases where the research hy-
pothesis is false (that is, when the causal null hypothesis is true).

7 ‘Bold ideas, unjustified anticipations, and speculative thought, are our only means for interpreting nature’
(Popper [1959], p.280). If scientists generate ideas with this in mind one might expect a very high back-
ground rate of falsity among new hypotheses, as Popper himself held.
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So only two-thirds of S’s hypotheses that are successful in passing the test for

truth, are in fact true. That means that one third of her successful theories are in fact

false. The key to understanding why is the base rate of falsity in the hypotheses she

produces. Since 90% of her hypotheses are false, a large proportion of her successes

will in fact be false hypotheses that came up with type-I errors (false positives) in the

test. Now let us imagine that other scientists come along and test S’s successes. Since

a third of her successful hypotheses are false, that falsity will mostly show up in the

outcome of these other scientists’ tests. Since about a third of S’s successful theories

are not successful on re-testing, it may look as if S is a shoddy scientist. But S is not a

shoddy scientist, in that she carries out high-quality experiments that get the correct

result 95% of the time. On the other hand, she is disadvantaged by testing hypotheses

that are very likely to be false. That fact may have nothing to do with shoddy science

and everything to do with the newness or difficulty of the field in question.

While the case of Dr M is fantastical, that of Prof. S is entirely realistic. The key

assumption, that only 10% of the hypotheses tested are true, is in fact the case in psy-

chology, according to an analysis by Johnson et al. ([2017]).

The central claim of this article is that the replication crisis can be explained is the

same way. Sterne and Davey Smith ([2001]) argue that when hypotheses have a low

probability of being true, significance testing can generate a high proportion of pos-

itive test outcomes that are in fact false positives, a point noted by Wacholder et al.

([2004]) and by Colhoun et al. ([2003]) in connection with molecular and genetic

epidemiology, and amplified in Ioannidis’s ([2005b]) broader claim that ‘most pub-

lished research findings are false’.8 Just as Prof. S’s science producedmany false the-

ories that passed her tests, so psychology and biomedicine have producedmany false

theories that seem to be correct according to the experiments carried out by scientists

in those fields. And just as the falsity of Prof. S’s many false but successful hypoth-

eses is revealed on re-testing, so in these fields also there is a high level of failure to

replicate the experiments supporting successful theories. The remainder of this sec-

tion articulates this proposition in more detail; the next section provides some reason

to think that it might be true.

The first adjustment to make to the base rate fallacy model of the replication crisis

is to distinguish between the two types of accuracy discussed above. First, there is

accuracy in saying that X is so when X is so. This is described as the power of a
8 Sterne an
Table 2. Probabilities associated with testing Prof. S’s hypotheses

Hypothesis is true Hypothesis is false

Passes test 0:1 � 0:95 0:9 � 0:05
Fails test 0:1 � 0:05 0:9 � 0:95
d Davey Smith ([2001]) a
lso point out the analogy with fa
lse positives in screening tests.
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study. Secondly, there is accuracy in saying that X is not so when X is not so. While

this does not have a formal name, it is equal to what is often called the confidence

level of the study. Correspondingly, there are two kinds of inaccuracy: saying that X

is not so when X is in fact so—type-II errors (or false negatives); and saying that X is

so, when in fact it isn’t so—type-I errors (false positives). The type-II error rate is

symbolized by b, and the type-I error rate by a. See Table 3 for a summary.

So we can now display the various probabilities in Table 4.

The false positive report probability (FPRP) is the probability of a hypothesis be-

ing false even though it passes the test (Wacholder et al. [2004]). From Table 4, we

see this is:

FPRP 5
(1 2 p)a

(1 2 p)a 1 p(1 2 b)
:

We must distinguish

Prðhypothesis is false, given that it passes the testÞ,
which is FPRP, from

Prðhypothesis passes the test, given that it is falseÞ,
which is a. Indeed, mistaking the two, so that one takes a low value fora to equate to

a low value for FPRP is a fallacy of probabilistic thinking of which the fallacy of

neglecting the base rate is one manifestation. The p-value fallacy is another (Good-

man [1999]).

If we set a 5 b 5 0:05 and p 5 0:1 as in the case of Prof. S, then we get the

result, as before, that the probability that hypothesis that passes a test is in fact false,

is about one third. As explained above, this result is the outcome of a combination of

p being low, plus a, although small, being non-negligible. We can see that as long as

the type-II error rate, b, is not close to 1, it does not have much of an effect on FPRP.

I will consider the importance of different values of b below.

On the other hand, for FPRP to be small, we need eitherp to be close to 1 ora to be

close to 0. And so ifp is itself is not close to 1 but instead is close to 0, thena needs to

be very close to zero—that is, negligibly small—for FPRP to be small. For example,

let us say that we want it to be the case that when we get a positive test outcome, this

is erroneous in only 5% of cases, that is, FPRP 5 0:05. As we have seen, it is fal-

lacious to think that setting a to be 0.05 will achieve this. What value should we give
Table 3. Types of accuracy and inaccuracy

Type of inaccuracy Error rate Accuracy Type of accuracy

Type-I error a 1 2 a Confidence level
Type-II error b 1 2 b Power
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then to a to have a FPRP of 5%? If we keep p 5 0:1 and b 5 0:05, then for FPRP

to be 1 in 20, the value of a must fall from 0.05 to 0.0056 (one-ninth of the value

we have been working with). I return to this point in more detail below.
3. Explaining the Replication Crisis: Low p and Non-negligible a

The preceding section argued that if there is both (i) a low background rate of truth

among hypotheses proposed and tested and (ii) a significance level set at a value that

although small is not negligible, then we would expect a high proportion of positive

results of tests of those hypotheses to be erroneous. Hence we would expect many

replication studies to fail to reveal what the original studies seemed to show. It is

one thing to argue that low p and non-negligible awould explain the replication cri-

sis, but quite another to show that they actually do. To complete the proposed expla-

nation of the replication crisis, we need to consider whether in fact the relevant sci-

ences are such that they combine low p with non-negligible a.
3.1. Science with low p

This explanation for the replication crisis depends on there being a low rate of true hy-

potheses among those considered sufficiently seriously to be tested. Is that plausible?

It is difficult to test directly for the hypothesis of lowp. A natural way to attempt to

do this would be to use repeated tests or tests of higher quality to find out what the

proportion of the hypotheses that initially tested positive are in fact true (which is

1 2 FPRP). But to do so would be to employ the model I have presented, using

the value for FPRP to calculate a value for p. That would be to beg the question

as issue, whether this model is a plausible explanation of the replication crisis.9

So we have to use indirect considerations. Why might a field have a low p for its

hypotheses? Let us start from the other end. Why might a field have a high p? One

reason is that the field is dominated by a well-established and well-confirmed theory

and the hypotheses of the field test specific aspects of this theory or applications of

the theory in particular domains, or they extend the theory in plausible ways. In such

cases it is possible to have a fairly high degree of confidence that the hypothesis is
9 For this reaso
ings (in biom
man and Gre
Table 4. Probabilities associated with hypothesis thesting

Hypothesis is true Hypothesis is false

Passes test p(1 2 b) (1 2 p)a
Fails test pb (1 2 p)(1 2 a)
n we cannot use the c
edicine) are false, sinc
enland ([2007]) accuse
onclusion of Ioannidis ([2005
e he uses similar arguments t
Ioannidis of circular reason
b]), that most published research find-
o reach that conclusion. Indeed, Good-
ing.
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true. For example, the discovery of the Higgs boson in 2012 was the experimental

verification of a hypothesis that had first been proposed in the 1960s and was devel-

oped in subsequent decades. That hypothesis was not a stand-alone theory but was a

component part of the standard model of particle physics. The standard model is one

of the experimentally best confirmed theories in all science, and before its discovery

the Higgs mechanism was the one remaining unverified part of the model. Further-

more, physicists had a clear understanding, based both in the well-established theory

and in a long-standing experimental tradition, of what kind of experiment would de-

tect the Higgs particle if it exists. Of course, despite its past successes, the standard

model might be erroneous in important respects and the route from the standard

model to the Higgs hypothesis was not trivial, and assumptions, albeit plausible

ones, need to bemade. So the outcome of the experiments carried out using the Large

Hadron Collider at CERN in July 2012 were not a forgone conclusion. Nonetheless,

most physicists believed that the Higgs particle would be discovered by that re-

search. Elsewhere in physics, the existence of gravitational waves, first directly con-

firmed in 2016, was a longstanding prediction of Einstein’s general theory of rela-

tivity. Since the latter has considerable independent experimental support, the

gravitational wave hypothesis was highly plausible. Designing and carrying out a

suitable detection experiment was not easy. But again, given the track record of suc-

cess of general relativity, the widespread expectationwas that gravitational waves do

exist and would produce the relevant outcome in a suitable experiment.

Clinical medicine and psychology, especially social psychology, contrast with

physics in two respects. First, although our understanding of physiology and pathol-

ogy are improving rapidly, the biological systems in question are so complex that our

knowledge remains radically incomplete. And the hypotheses under consideration in

clinical medicine are not more-or-less direct consequences of those underlying basic

theories. Rather they are, for example, hypotheses concerning the action of a drug on

patients, and so stand at some inferential distance from the underlying theory. So the

connection between our underlying theory and the hypothesis under test is much

weaker than in physics. Secondly, the experimental evidence for the underlying the-

ory is generally much weaker also.10

Thus in physics, we can say, first, ‘if the standard model is correct, then the hy-

pothesis of the Higgs mechanism is very probably true’; and, secondly, ‘there is very

strong evidence that the standard model is correct’. Together these imply that it is

probable that Higgs hypothesis is correct. Consider, by contrast, the trials of the drug

Bapineuzumab, a proposed treatment for Alzheimer’s disease. Here the underlying

basic theory is that beta-amyloid (Ab) plaques that are characteristic of Alzheimer’s

play a causal role in the pathology of the disease and cause the cognitive impairment
10 There are other reasons why one science might have a lower p than another, some of which I consider
below. One difference, pointed out to me by an anonymous referee, is that some fields have a well-
established practice of circulating preprints, working papers, and the like. This may help eliminate errors
or implausible hypotheses before formal publication or even before experiments are conducted.
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that is symptomatic of it. This is the amyloid cascade hypothesis. Bapineuzumab is

an antibody to those plaques, and hence it was hoped that the drug would inhibit and

reduce the Ab plaques and so reduce the symptoms of Alzheimer’s. That it would do

so is the target hypothesis tested in two major trials in 2012. However, in this case,

the underlying theory, the amyloid cascade hypothesis, though supported by evi-

dence is not undisputed. Some researchers hold that so-called tangles (collapse of

the t proteins) are an equally or more significant causal factor. The relationship be-

tween the Ab plaques, the tangles, and the cognitive effects of Alzheimer’s disease

are far from being fully understood. So the theory underlying the hypothesis that

Bapineuzumab would be an effective intervention for Alzheimer’s is both incom-

plete and subject to doubt. Hence the best one can say in this case is first, ‘if the am-

yloid cascade hypothesis is correct, it is possible that reduction in plaques will halt or

reverse Alzheimer’s, and so conceivable that an antibody to the plaques will assist

Alzheimer’s sufferers’; and, secondly, ‘the amyloid cascade hypothesis may be cor-

rect, but the evidence is far from conclusive’. Consequently, the hypothesis that

Bapineuzumab would be an effective treatment for Alzheimer’s was at best a reason-

able hope; it was hardly a hypothesis that anyone should have expected to be true. In

summary, mechanistic reasoning is very helpful in medicine, but it often fails to sup-

port a high probability (high p) for its hypotheses. Analogous comments may be

made about psychology and social psychology where there is little in the way of a

complete and well-evidenced underlying theory from which hypotheses can be de-

rivedwith confidence. Inmedicine there are additional reasons for a lowp. As Begley

and Ellis ([2012]) explain: ‘Given the high unmet need in oncology, it is understand-

able that barriers to clinical development may be lower than for other disease areas,

and a larger number of drugs with suboptimal preclinical validation will enter oncol-

ogy trials’. Such a motivation—alongside a financial one—was no doubt at work in

trialling Bapineuzumab before the basic science ruled out the tangle hypothesis.

Other areas in non-clinical biomedicine benefit from the fact that it is easy to gen-

erate and test new hypotheses. Genetic and molecular epidemiology seeks causal

linkages between genetic variants and disease, in particular in connection with en-

vironmental factors. As Wacholder et al. ([2004]) explain, when it was not feasible

to study multiple genes in a pathway, let alone an entire genome, studies were di-

rected at particularly promising hypotheses, prompted by strong biological evidence;

whereas advances in technology have now made it much easier and cheaper to test

for possible relationships between variants in genes (whose function may not be

known) and disease. Given the large number of possible relationships, but the rather

smaller number of true relationships, it is to be expected that many of the hypotheses

tested will be false.11

Hypotheses in clinical medicine and in psychology, as well as in other sciences,

may come from sources other than a basic theory. Hypotheses may be suggested
11 Ioannidis ([2005b], p. 699) gives an example concerning genetic determinants of schizophrenia.
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by the results of observational studies or even by unsystematic observations or the

researcher’s intuition. These are perfectly legitimatemeans of generating hypotheses.

On the other hand, they are not means of generating hypotheses that give those hy-

potheses a high probability of truth. Indeed, some sources seem clearly liable to pro-

duce false hypotheses. For example, psychologists have been investigating whether

subjects who acted out the literal meaning of a metaphor would demonstrate the

behavioural dispositions associated with their metaphorical meaning. In one study

(Leung et al. [2012]), subjects working inside a box-like room were compared with

subjects working outside of the room with regard to their creativity to see whether

literally ‘thinking outside the box’ can boost creativity. In another study (Sanna et al.

[2011]), researchers investigated whether subjects in a physically more elevated posi-

tion (occupying the ‘moral high ground’) were more likely to engage in pro-social be-

haviour (exhibiting ‘higher virtues’). It is perfectly legitimate to investigate such ideas.

But they are clearly not hypotheses in which one should have had high confidence

ahead of testing. Consequently, although the some such experiments produce positive

results, it should not be a very great surprise that subsequent attempts at replication do

not.

A commonmotivation or inspiration for a new hypothesis is an analogywith other

previously confirmed hypotheses (Dunbar [1996]; Blanchette andDunbar [2000]).12

For example, the power-pose study (Carney et al. [2010]) referred to above does not

cite any underlying theory from which the hypothesis is derived. Rather the authors

refer to two sets of research findings. First, they point out that power is expressed

through physical displays, a commonplace observation confirmed by research. Sec-

ondly, they refer to research on embodied cognition:
12 Kuhn
an ex
norm
[. . .] some research suggests that bodily movements, such as facial displays, can
affect emotional states. For example, unobtrusive contraction of the ‘smile mus-
cle’ (the zygomaticus major) increases enjoyment (Strack et al. [1988], 88), the
head tilting upward induces pride (Stepper and Strack [1993]), etc.
On the basis of these findings the researchers hypothesized that adopting high-

power poses would cause increased feelings of power and tolerance to risk. Again,

given such background information, it is reasonable to suppose that there might be

such an effect. But that information certainly does not make it likely that there is such

an effect.

There is a further problem when a false positive result itself becomes an exemplar

upon which further research hypotheses are based. Some of the supposed effects that

have failed to replicate, such as social priming, are sufficiently accepted and impor-

tant that new research hypotheses are suggested by analogy with them. With many

false positive results, the practice of modelling new hypotheses on analogies and
([1970]) argued that the key element in his notion of a ‘paradigm’ is what he called an ‘exemplar’—
emplary solution to a scientific problem that become a model for subsequent research. In his view,
al science is driven by modelling research problems and their solutions on such exemplars.
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parallels with old results will itself lead to those new hypotheses being false in most

cases. And this may well explain the problem with the power-pose hypothesis. For it

also turns out that the finding that smiling increases enjoyment, uponwhich the power-

pose hypothesis was explicitly based, has itself failed tests of replication (Wagen-

makers et al. [2016]). What we may call the ‘falsity feedback effect’, whereby a study

with a false positive becomes an exemplar (model) for subsequent hypotheses, will

clearly encourage a higher base rate of falsity among new hypotheses.
3.2. The value of a: Type-I errors

For very many studies in the fields we are considering a is set as 0.05, the value we

have been using above. That is because what counts as passing the experimental test

is that it should produce a p-value of less than 0.05. When an experimental test is

carried out, the observed value of some parameter of interest may differ between

the experimental arm of the experiment and the control arm, in a way that is quali-

tatively in line with the hypothesis. Some such difference may come about by ran-

dom error, even if the hypothesis is false. When the data is analysed, its p-value is

calculated. This is the probability of obtaining a difference between the two groups

at least as great as that observed, if the null hypothesis is true (that is, if the hypoth-

esis under test is false). This is null hypothesis significance testing. In defining suc-

cess as a p-value as less than 0.05, we are saying that the chances of a successful

(positive) result given that the hypothesis is false is 0.05. We are setting success

at a level such that type-I errors occur in 5% of false hypotheses tested.

It is notable that this threshold is far less stringent than that used in some other

sciences, most obviously physics. When the Higgs boson was discovered, the data

met the widely accepted ‘five sigma’ (5j) standard. Here j is one standard deviation

from the mean. So 5j refers to an outcome that is five standard deviations (or more)

from the expected mean value, should the null hypothesis be true. That is equivalent

to an a of 0.00003%, which is to say we would expect to get this positive result (or

more extreme) from a false hypothesis on, roughly, one occasion in every 3 million

tests. The principal reason for physics using this standard is the quantity of data pro-

duced by the experiments in particle physics. This has two consequences. First, it is

possible to produce data that meets this standard, whereas in medicine and psychol-

ogy is just is not feasible to have enough patients or subjects to generate data of that

quality. Secondly, it is necessary to have data that meets this high standard, in order to

avoid false positives. This is because scientists use the data from experiments to look

for patterns—so-called bumps in the data—that may be suggestive of hitherto unsus-

pected effects. However, given the large quantity of data from a noisy environment,

one can expect this kind of data-trawling to generate false positives—false hypothe-

ses arising from statistical blips. So a correspondingly stringent standard of discovery

is required. For example, several bumps were detected by Fermilab’s Tevatron col-

lider that were significant at the 3j level and which subsequently disappeared when
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more data was acquired. Physicists thus typically regard data at the 3j level as ‘ev-

idence’ of an effect (such as the existence of a new particle) while 5j is required

for ‘discovery’. In effect, the physicists are acknowledging the claim made in this ar-

ticle: if you use a low quality means of generating hypotheses (a means that generates

a high background rate of falsity), then you need a correspondingly high standard of

statistical significance (that is, a very low a). Additionally, the external pressures are

different for physics from medicine. The huge cost of the particle accelerators in

physics means that the physicists running them have strong reason to avoid retracting

announcements of discoveries. Whereas in medicine there is economic pressure on

drug companies to produce results, as well a moral pressure to find cures.
4. Other Explanations of the Crisis

The Nature survey reported that 60% of respondents held that pressure to publish

and selective reporting played a major part in the crisis surrounding failed replica-

tions. More than 50% referred to insufficient replication in the lab, poor oversight, or

low statistical power. None pointed to the two factors identified in this article: low p

and too high a value for a.
4.1. Low statistical power

Some commentators have associated the replication crisis with the low statistical

power of many studies in the relevant fields. Statistical power is the converse of

b, the type-II error rate. It is one of the two kinds of accuracy considered above,

1 2 b (the other being 1 2 a).

Button et al. ([2013]) provide an analysis to support this claim. They focus on the

positive predictive value (PPV) of a positive outcome in a test or experiment: the prob-

ability that a hypothesis is in fact true, given that it yields a positive outcome. This is

the number 1 2 FPRP that I mentioned above. We can see straightforwardly that:

PPV 5 1 2 FPRP 5
p(1 2 b)

(1 2 p)a 1 p(1 2 b)
:

And this number increases as b decreases, and so in order to maximize PPV we

should aim to reduce b, the type-II error rate, or, equivalently, increase the power

of the study, 1 2 b.13

I do not find this analysis entirely satisfactory either as an explanation of the repli-

cation crisis or as a solution. Note first that the problem does not disappear if we re-

quire all the studies to have a very high power. In the example of Prof. S we assumed

an accuracy of 95%with regard to both type-I and type-II errors:a 5 b 5 0:05. That
13 The analysis from (Button et al. [2013]) is slightly different in that they use the pre-study odds of the
hypothesis being true, whereas I have used the p probability of its being true. These are mathematically
related so their analysis is mathematically identical to that given in this section.
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is a very high power andwould be unusual in the areas of researchwe are discussing.14

It is rather higher than the 80% typically thought to be satisfactory. Nonetheless, S’s

PPV is only 68%—almost a third of her positive results are false.With herp of 0.1 and

a set at the conventional 0.05, even maximum power (100%) will increase her PPV

only by 1% to 69%. For thatmatter, if her powerwere lowered to 80%, then her PPV is

still 64%. And lowering her power to the rather feeble 50%, lowers her PPV only to

53%. Thus a power change from a low 50% up to an impossibly perfect 100% raises

S’s PPV from 53% to 68%. Thus a change in power, in this case, makes only a mar-

ginal difference to PPV.

The positive experimental results in a field are a combination of the false positives

and the true positives. Sowe have a high chance of a positive result being a false positive

when the former are numerous and the latter are rare. It is therefore correct that PPVwill

improvewhenwe increase the number of true positives. But in a contextwhere there is a

high number of false positives, this seems to be focusing in the wrong place. What we

really need to do is to reduce the false positives. Think of the example of terrorist de-

tection device. In that case what makes the device impractical is the large number of

innocent travellers that are falsely identified as terrorists. The overall proportion of ter-

rorists among the positives will be increased if we raise its type-II accuracy from 95%

to 100%. But by only a very little and not by enough to render the device useful.

I do note, however, that if power is already rather lower than I have supposed, say

around 0.2, then the benefit to PPV of increasing power will be greater, because the

gradient of the curve in Figure 1 is steeper for low power. So where in fact do the

sciences in question find themselves on the curve in Figure 1? There is recent evi-

dence that in some fields power is low, as low as 0.2 for small effect sizes, in cogni-

tive neuroscience and psychology (Szucs and Ioannidis [2017]) and some subfields

of biomedicine (but not others) (Dumas-Mallet et al. [2017]). The principal cause of

low power is small sample size (small effect size is another important factor).

Dumas-Mallet et al. ([2017]) excluded studies that concerned treatments of dis-

ease (and also screening and diagnosis)—which are studies that would typically

have large sample sizes. So for some fields it does appear that low power is a prob-

lem, and this does reduce PPV because there are even fewer true positives to coun-

teract the false positives generate by non-negligible a. So increasing power, say

from 0.2 to the accepted standard of 0.8, will increase PPV from about one third

to two-thirds (for a 5 0:05 and p 5 0:1). But, as argued above, reducing the re-

maining third (that is, getting PPV above 0.68) cannot be achieved by any amount

of increase in power, but only by reducing a, as Figure 2 shows, or by increasing p.

There are three other respects in which raising power has some benefits, other than

by directly increasing PPV. First, and most importantly, we should want the replica-

tion tests themselves to be highly powered. Direct replications will often just mirror

the original experiment along with its power calculations, which may in any case
14 I have used this unusually high value in order to isolate the contribution of a non-negligible a.
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overestimate the experiment’s true power. A low powered replication may fail to re-

veal a true effect. So in some cases wemight mistakenly believe that original hypoth-

esis and its supporting experiment have failed a test of replication, but in fact they are

correct and it is the replication that is in error. Note that this error is a type-II error and

so power is directly relevant. We should want to increase the power of our replica-

tions so that we can be sure that a failure to replicate really is a problem for the orig-

inal hypothesis and experiment.

Secondly, when it comes tominimizing the falsity feedback effect it will help to have

a higher proportion of the positives being true positives, even if that does not come from

reducing the absolute number of false positives. Given limited resources for carrying

out future research, it will be better for science if a larger proportion of new hypotheses

are modelled on true exemplars, thus increasing p for those hypotheses.

Finally, increasing power will be achieved by increasing the sample size. That in

turn means that it will be possible to decrease awhile still being able to detect worth-

while effects. That depends on our being willing to reduce a, the choice of which is a

matter of convention. If one increases power without reducing a then our experi-

ments will simply reveal more positives where the effect size is small. This may be

tempting. But it makes no difference to the analysis just given. It will remain the

case that many of the newly detected apparent ‘effects’ are mere statistical artefacts.

I return to this below.
Figure 1. PPV ( y-axis) as a function of power (x-axis) when p 5 0.1 and a 5 0.05).
Even with maximum power, almost a third of positive results will be false positives.
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To summarize, I have used an implausibly high power of 95% in order to isolate

the effect of a set at 0.05, when p 5 0:1. Even power of an impossible 100% leaves

an FPRP (the false positive report rate) of 31%. So improving powerwould still leave

a big problem. It is true that when we give more realistic values for power, say 50%,

then the problem becomes even worse, with an FPRP of 47%. Still, most of this 47%

is accounted for by the value of a. (For very low powered studies, the influence of

low power on the FPRP does become more significant.) Increasing power of studies

in fields where power is often low is certainly valuable. But it is no panacea.
4.2. Publication bias

Publication bias is any kind of bias where the details of the results of a trial affect

whether it is published (independently of other factors in the research, such as qual-

ity). The principal form of publication bias is a tendency to publish research that

shows a statistically significant outcome more than studies with negative results.
Figure 2. PPV ( y-axis) as a function of power (x-axis) when p5 0.1, for different val-
ues of a.
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Such bias can be exercised by the journal (which declines to publish negative results)

or by the researcher (who declines to submit them—the so-called file-drawer prob-

lem (Rosenthal [1979])). This is the form of publication bias that I will assume is at

work, as evidence suggests it is in biomedical research and in psychology (Ross et al.

[2012]). Publication bias has been cited as one source of the replication crisis (Fer-

guson and Heene [2012]; Francis [2012]; Pashler and Wagenmakers [2012];

Romero [2016]).

Publication bias on its own cannot be an explanation of the replication crisis.

Imagine circumstances where there is strong publication bias at work—only posi-

tive results get published. But the scientists and journals also apply very high stan-

dards of quality and set a high bar for statistical significance. And let’s say also that

hypotheses are tested only when they have solid theoretical backing. Since a pow-

erful filter for eliminating false hypotheses is being applied, it will be the case that

when one sees a report of a positive result, that positive result is very likely to be

true. There will few false positives, hence few failed replications. On the other hand,

when one formulates a hypothesis on which there is no published information, one

will not know whether that is because the hypothesis has been tested and found un-

proven or false (an unpublished negative result) or because the hypothesis has not

been tested. One’s ignorance in the latter case does not, however, undermine one’s

knowledge in the positive case.

So publication bias cannot explain the replication crisis because it cannot explain

why there are any false positive results. And without false positives there can be no

crisis. But publication bias can exacerbate the crisis. If there is a non-negligible

chance of a false positive result being published, then it will be important that neg-

ative results on the same topic also get published. If negative outcomes are pub-

lished, then the community is less likely to accept the positive result as proven, be-

cause, for example, a meta-analysis shows that when all the available evidence is

pooled, the effect is not statistically significant. Publication bias renders meta-analysis

less reliable (Colhoun et al. [2003]; Ferguson and Heene [2012]).15 Or if the negative

result is published first, then in order to claim a positive outcome subsequent research-

ers will need to carry out trials of greater size. That very fact will itself mean that the

probability of publishing a false positive is reduced. Conversely, bias preventing the

publication of negative results will make it more likely that false positives will be ac-

cepted as true.

Publication bias is in itself a serious problem for science, one which the AllTrials

initiative is attempting to address. It does contribute to the replication crisis, but only

marginally. The problem with the replication crisis is the publication of erroneous

studies, not the non-publication of correct studies.
15 Though, as Romero ([2016], p. 65) points out, if the null hypothesis is true, then in the long run published
positive results in one direction should be cancelled out by positive results in the opposite direction.



Understanding the Replication Crisis 983
4.3. Bias, questionable research practices, and fraud

A large part of the sense that there is a crisis in some parts of science is the concern

that the best explanation of the many replication failures is that many scientists are

carrying out badly managed experiments that allow for unconscious bias, or are us-

ing self-serving analytical techniques such as p-hacking, or are even engaging in

conscious fraud.16 The culture of ‘publish or perish’ is widely blamed for poor stan-

dards and practices (Simmons et al. [2011]; John et al. [2012])—‘questionable re-

search practices’, as they have become known—along with journal editors’ biases

towards positive over negative results (see above) and in favour of papers meeting

inappropriate aesthetic standards (Giner-Sorolla [2012]). There are powerful incen-

tives for researchers to produce interesting positive results and so it would be no sur-

prise that some researchers cut corners, leading to outcomes that cannot later be rep-

licated (Romero [2017]), as well as disincentivizing replication itself.

There is no doubt that there are cases of this kind.Most notoriously, the social psy-

chologist Diederik Stapel was found by Tilburg University to have committed fraud

on a huge scale in the first decade of this century, leading to the retraction of over

fifty publications in social psychology. The report produced by Tilburg University

argued that the scientific community had itself failed, in that it was insufficiently crit-

ical and too ready to accept results that confirmed researchers’ intuitions and expec-

tations.17 Stapel is at one extreme. But it is easy to see how others might uncon-

sciously allow themselves to bias their experiments (as is shown, ironically, by

many results in cognitive and social psychology).

That some false positives are to be explained in this way is clear. But what pro-

portion? To answer that reliably would require a careful examination of studies that

have failed replication attempts, looking for signs of bias, poor research practices,

and fraud. There is some evidence on this, but not enough yet to draw a clear con-

clusion. It may be that there are differences in this respect between different fields.

Research teams in social psychology tend to be rather smaller than those engaged in

biomedical research and for that reason it would be easier for poor practice to go un-

challenged and unchecked in the former than in the latter. It is not possible to draw a

definitive conclusion in comparing the poor practice explanation of the ‘crisis’ with

the one I have presented. However, the plausibility of the explanation presented in

this article does mean that we should be circumspect before resorting to moral panic.

There is another explanation of the replication crisis that is consistent with experi-

ments being carried out to impeccable standards. With low p and non-negligible

a even excellent scientific practice will yield many false positives and hence many

failed replications.
16 p-hacking occurs when researchers have collected data on many variables, look for correlations in the
data for which p < 0.05, and then report these as statistically significant.

17 A plausible conclusion but one that has been challenged by social psychologists.
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I note, however, that accepting a as high as 5% might be regarded as a question-

able research practice of the community as a whole. The research community, and its

most successful practitioners in particular, benefit from a relatively high a. They are

incentivized to publish. A lower awould require larger sample sizes and that means

more expensive experiments. Which in turn means fewer experiments and so fewer

publications. And so successful scientists in these fields have no reason to pursue

greater PPV.
5. What Is to Be Done?

In the light of the forgoing how should science respond to the replication crisis?

There are three possibilities: (i) Do nothing—this is the nature of these sciences at

their current stage of development. (ii) Seek means of generating research hypoth-

eses that are more likely to be true. (iii) Require that the experimental research be

of even higher quality, in particular by requiring a rather lower a than the 0.05 cur-

rently regarded as acceptable.
5.1. Quietism: This is the nature of science

The quietist approach proposes that we should just accept that it is in the nature of

science that we get things wrong, and that this is particularly true with sciences in

early stages of development. Popper ([1963]), for example, urged scientists to for-

mulate bold hypotheses. But bold hypotheses are likely to be false. So we should,

like Popper himself, expect to find that our hypotheses, although they may pass some

tests, will be falsified in due course.18 Thus a corollary of the quietist position is that

one should have a corresponding lowered credence even in hypotheses that have

passed the tests that we have set them. That in turn should influence how think of

new hypotheses. In the light of the falsity feedback effect, one should be wary of plac-

ing too much prior confidence in new hypotheses that are modelled on other, appar-

ently successful hypotheses. The quietist must accept that the difference between pass-

ing and failing a single test does not correlate that closely with the difference between

truth and falsity. Consequently the quietist should value replication studiesmuchmore

than they are currently valued in many areas of science. Klein ([2014], p. 327), for ex-

ample, reports that the Journal of Personality and Social Psychology does not publish

replication studies as a matter of policy, evenwhen the replication concerns an alleged

finding of considerable significance.19 The quietist should deplore this.

Quietism may be a reasonable stance to take in social psychology. The quietist

may hope that in due course certain results will indeed stand out as reliable (thanks
18 Popper’s reasons for scepticism are, however, not those discussed in this article, but lie instead in his
rejection of induction.

19 For example, that journal’s editor declined to publish replications (with null results) of Bem’s ([2011])
findings concerning precognition (Ritchie et al. [2012]).
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to successful replications) and that a stronger science may crystallize around these.

And that may assist the development of a strong theory in the field. Matters may be

thought to be different in clinical medicine. For here it is important that we know

which hypotheses about the effectiveness of an intervention are true and which are

false. If a false hypothesis passes a conventionally accepted test (such as a phase III

RCT with a 95% confidence interval), then that may initiate the use of that interven-

tion (subject to various regulatory conditions). Not only will the intervention (for ex-

ample, a new drug) fail to do good, it will do harm. Most treatments have harmful

side-effects that are acceptable only because they are outweighed by the supposed

benefits. Furthermore, use of one treatment will often preclude or displace the use

of another treatment. So a patient who takes a new drug that although ineffective

has achieved a positive result in an RCT may thereby be missing out on a treatment

that really is effective (even if at a level lower than that falsely claimed for the new

drug). And belief that this treatment is effective will discourage investment in devel-

oping further new treatments.20
5.2. Higher quality hypotheses

The second approach advocates trying to generate hypotheses with a greater prob-

ability of truth. This is, of course, rather easier said than done. In medicine this

amounts to reaffirming the importance of basic research. It may also encourage

the continuation of basic research beyond the point when a new therapeutic idea be-

comes plausible. Rather than moving straight to a trial, as in the case of Bapi-

neuzumab, further basic research may be a better use of resources, so that hypothe-

sized mechanisms of action can be better confirmed before being used to generate or

support a proposal regarding an intervention. In some cases greater use of observa-

tional data may be used to supplement mechanistic hypotheses. In social psychology

matters are different. Here the problem is not so much an incomplete basic theory,

but lack of any basic theory at all; and the prospect of one capable of generating

high-quality hypotheses is some way off. In any case the route to that theory will

most likely be via the collection first of a set of reliable results of the general kind

that social psychology is currently trying to produce. So it will be difficult directly

to improve the quality of hypotheses in social psychology. However, it might be that

over time a greater proportion of the accepted hypotheses are true, as replication

weeds out the false positives and more stringent tests (see below) prevent them from

arising in the first place. That being the case the falsity feedback effect with be in-

creasingly dominated by a truth feedback effect, as the models for new hypotheses

are increasingly true positives rather than false positives.
20 The point about the pragmatic implications of quietism does have some relevance to social psychology
too, since many of its results have been used in devising policy or in the business of professional devel-
opment and training personnel.
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5.3. Decrease a

The third solution suggested by my analysis is that we should demand higher con-

fidence levels before we accept a result in these fields. That a result is regarded as

statistically significant when its p-value is less than 0.05 is a convention, one widely

adopted in medicine and psychology, but not in other sciences.21 Earlier I mentioned

that physics requires outcomes that are more than 5j from the mean before a null

hypotheses is definitively rejected, whereas in biomedicine and social psychology

1.96j is the norm. (1.96j is equivalent to a confidence interval of 95% in a two-tailed

test.) A 95% confidence interval looks good, but, as our discussion of the base rate

fallacy makes clear, a 95% confidence interval does not lead to a probability of 95%

that a hypothesis is true given that is passes the test. Tomake that inference is to com-

mit the p-value fallacy. To get a PPV of 95%, when p 5 0.1, we would need to re-

duce a to almost 0.005 (to increase our confidence level to 2.85j, to be precise). As

opposed to increasing power alone, decreasing a does, in principle, allow us to in-

crease PPV to any desired value (see Figure 2).

Others have also called for lowera. Johnson ([2013]) and Benjamin et al. ([2018])

suggest that p-values should be below 0.005 before a result is accepted as statistically

significant.22 One of themotivations for Benjamin et al. is that this changewould help

address the replication crisis. Others resist such a move for various reasons. Crane

([unpublished]), for example, asserts ‘P-hacking and the reproducibility crisis: like

smoking and lung cancer, one cannot be discussedwithout the other’ and soBenjamin

et al. fail to address the central issue of the crisis. But that assertion depends on assum-

ing that the central cause of the crisis is the prevalence of questionable research prac-

tices.While p-hacking and the like contribute to the problem, this analysis suggest that

we cannot safely assume that poor practice is the principal contributor. Wacholder

et al. criticize a similar proposal from Colhoun et al. ([2003]) for lowering a:
21 It is
Fishe
beca
this m

22 Yet o
McS
We consider setting a low a level to be an indirect and inferior means to achieve
the desired end of a low FPRP, because an FPRP can be high even for a low
observed P value when the prior probability is low. Moreover, insisting on a
very low P value before any finding is considered statistically significant may un-
necessarily reduce statistical power when the prior probability is high, thereby
constraining research on diseases with rare genetic variants or on diseases for
which studies with large sample sizes are unrealistic. (Wacholder et al. [2004])
However, what these comments show is that there is no single a value that is appro-

priate for all fields. We have seen that physics works with very low a indeed. For
unclear why the 5% significance level is regarded as appropriate. We find it first clearly stated in
r, but its origins go back further (Cowles and Davis [1982]). I suspect that it is widely accepted
use a one-in-twenty occurrence sounds rare enough. But, as discussed, it is a fallacy to assume that
eans that only one in twenty positive results are erroneous.
thers call for the abandonment of null hypothesis significance testing altogether (for example,
hane et al. [2019]). Bayesians in particular propose alternatives (for example, Masson [2011]).
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research on carefully targeted hypotheses that are backed by strong biological ratio-

nale, then the a 5 0:05 standard may remain appropriate. The point about orphan

diseases is an important one. If there are too few patients to support research with a

very low a (see below), then it will be necessary to ensure that only those hypotheses

are tested that are well-motivated by strong underlying theory. But if that is not pos-

sible either, then we have to accept that the results of some such research will remain

tentative. Benjamin et al. ([2018]) propose that results with 0:005 < p < 0:05

should be called ‘suggestive’.

It is true that one consequence of this proposal is that trials need to be much larger

if they are to detect the same effects while being statistically significant at lower sig-

nificance levels, such as at the 0.5% level (a 5 0.005). That will likely be too de-

manding for psychology. It may not be quite such an obstacle in clinical medicine

where quite large trials are already common. A current advantage of large trials for

pharmaceutical companies is that they are able to detect very small effects that are

statistically significant at the standard 5% level. Reducing a would mean that many

of these results are no longer counted as statistically significant. That itself may, par-

adoxically, be a benefit, since many such small effects, while statistically significant

at the 5% level are not clinically significant. For example, Bhardwaj et al. ([2004])

discuss a large trial (2209 patients) of penciclovir, a topical treatment for herpes

labialis (cold sores). There was a median reduction in time to healing of lesions from

5.5 days in the placebo group to 4.8 days in the treatment group. This was statisti-

cally significant at the 1% level (p < 0.001). But as the authors report, ‘the results of

this study, while statistically significant, lack much clinical relevance [. . .] This

study, by using a very large sample size, detected a difference so small that it is prob-

ably not of much clinical benefit to patients’. That is, while a reduction in awill lose

many false positive results it will also lose some true positive results, but these will

often be results of limited or no clinical relevance. The demand for more stringent

statistical standards and so for larger trials may mean that there will be fewer trials.

Again, that need not be a disadvantage in the context of a large number of false pos-

itives. Fewer trials will mean that resources are directed towards testing those hy-

potheses with the best chances of producing a positive result (those thought most

likely to be true) rather than trials that are little better than fishing expeditions. That

in turn will itself improve the PPV.
6. Conclusion

Let us return to a case such as that discussed in the Harvard Medical School study.

Consider subject S who assumes that a test for some disease is highly reliable—it is

95% accurate. S then unwittingly falls victim to the base rate fallacy and so expects

nineteen out of twenty people with a positive test result to be suffering from the dis-

ease. S then discovers that when retested the majority of those who had a positive
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test result now come back with a negative result. S is now likely to think she make a

mistaken assumption—the test was not as reliable as she had assumed. In fact, it

seems to be downright unreliable. S may lose faith in that test and perhaps begin

to doubt other aspects of modern medicine. But that would not be the correct con-

clusion to draw, as we have seen. Things only look that way because S committed

the fallacy of base rate neglect.

This article has argued that we can explain the replication crisis and the scientific

community’s concern about it in the same way. By focusing on an a value of 0.05 we

thinkwe ought to be able to have a high level of confidence that a hypothesis is true, if

it is confirmed by a properly conducted study. On subsequentlyfinding grounds, such

as failure to replicate, for holding thatmany such hypotheses are false, we are inclined

to think that the original studies were not properly conducted. The belief that many

studies in psychology or clinical medicine are not properly conducted takes us a long

way towards a crisis of confidence in those sciences. This article argues that this is

fallacious reasoning. To say this is not to deny that questionable research practices

have contributed to the existence of false positives, or that the incentive structures

of science can sometimes act against the search for truth and replicable findings

(Nosek et al. [2012]; Higginson and Munafò [2016]; Romero [2016]; Christian

[2017]; Romero [2017]). These are undoubtedly real problems for science. Nonethe-

less, the human tendency to attribute intention, malfeasance, and defect of character

where we see harm (Jones and Harris [1967]; Ross [1977]; Harman [1999]; Knobe

and Burra [2006]), such as publishing unreproducible findings, may lead us to over-

estimate their significance. It is important to be aware that even well-performed re-

search can be quite likely to produce a false positive result. Recognizing this might

reduce the acrimony and tension that surrounds failed replication.

The analysis I have given lends itself very naturally to a Bayesian treatment (see

Colhoun et al. [2003], p. 869; Wacholder et al. [2004], p. 439). I do not pursue the

details here because it is clear that the conclusions are exactly the same. In passing I

note the following: First, what we have called p here is the frequency with which a

means of generating hypotheses generates true hypotheses. It could be interpreted as

a credence, a degree of belief. If that degree of belief is determined by the track re-

cord of hypotheses in the field, as the objective Bayesian would recommend (Wil-

liamson [2010]), then the Bayesian analysis agrees with that given here. Secondly,

it is important to note that the frequentist is entitled to consider the source of the hy-

pothesis (and so the value of p) in deciding how the evidence bears on a hypothesis;

the frequentist is not obliged to reject the null hypothesis if the p-value obtained from

an experiment is less than 0.05. Fisher ([1934], p. 3) himself refers to ‘the salutary

habit of repeating important experiments, or of carrying out original observations in

replicate’. He also emphasized the benefit of replicating experiments to increase the

confidence we have in an outcome, stating that the ‘confidence to be placed in a re-

sult depends not only on the magnitude of the mean value obtained, but equally on

the agreement between parallel experiments’ ([1934], p. 123).
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