

9 DECEMBER

2.30 P.M.

ROOM A204 - POVO 1

The complexity of solid tumors such as pancreatic ductal adenocarcinoma (PDAC) and bladder cancer demands integrative approaches that combine biological fidelity with computational power. Here we outline a multi-modal translational framework that leverages patient-derived organoids, spatial transcriptomics, microfluidic platforms, and artificial intelligence to accelerate personalized cancer therapy development.

Al models trained on transcriptomic data can classify tumors based on their likely therapeutic response, even when organoids cannot be produced. Meanwhile, the iBloC (immune Bladder-on-Chip) platform provides a microfluidic model that mimics tumor-immune interactions in bladder cancer, enabling dynamic drug testing and real-time molecular analysis. Together, these systems form a scalable, clinically relevant framework that combines experimental and computational methods to support personalized cancer treatment.

ш **OE NANA**