Dipartimento di Matematica

Seminario / Workshop
Image
globo con formule matematiche

Momentum and mass conservative mixed FEM for the Stokes problem

30 Gennaio 2026 , ore 11:00 - 12:00
PovoZero, Via Sommarive 14, Povo (Trento)
Aula Seminari 1
Ingresso libero
Organizzato da: Dipartimento di Matematica
Destinatari: Comunità universitaria
Referente: Ana María Alonso Rodríguez
Contatti: 
Staff del Dipartimento di Matematica
Image
globo con formule matematiche
Speaker: Jessika Camaño (Universidad Católica de la Santísima Concepción - Concepción, Cile)

In this work, we analyze a pseudostress-based mixed finite element method for the Stokes problem that ensures both mass and momentum conservation. Mass conservation is achieved by approximating the velocity with the lowest-order Raviart–Thomas elements, while momentum conservation is enforced through a discrete Helmholtz decomposition of the piecewise-constant vector space. We establish the well-posedness of the method and derive optimal convergence rates, including a superconvergence result for the velocity gradient and pressure approximations. In addition, to improve the efficiency of the method in terms of the total number of degrees of freedom, we propose equivalent pseudostress-stream-function numerical schemes that preserve mass and momentum conservation in the two-dimensional case, without increasing the computational cost, and mass conservation in the three-dimensional case. Finally, numerical experiments are presented to confirm the theoretical results.