Dipartimento di Matematica

Seminario / Workshop
Image
sfera con formule matematica

Stability of Spiking Neural Network in Binary Classification

9 Settembre 2025 , ore 11:00 - 12:00
PovoZero, Via Sommarive 14, Povo (Trento)
Seminar Room "1"
Organizzato da: Department of Mathematics
Destinatari: Comunità universitaria
Referente: Gian Paolo Leonardi
Contatti: 
Staff del Dipartimento di Matematica
Image
sfera con formule matematica

Ciclo di seminari del Dipartimento di Matematica organizzato da Gian Paolo Leonardi in collaborazione con: Claudio Agostinelli, Fabio Bagagiolo, Luigi Amedeo Bianchi, Stefano Bonaccorsi, Michele Coghi, Alessandro Oneto, Riccardo Ghiloni, Veronica Vinciotti.

Speaker: Massimiliano Datres (LMU Munich)

We prove that the binary spiking classifiers generated by random wide deep Spiking Neural Networks (SNNs) with sign activation function are biased towards simple functions. For any given static input, the average Hamming distance of the closest input with a different classification is at least \sqrt{n}/log n, where n is the dimension of the input. Therefore, our result identifies a fundamental qualitative difference between a typical binary classifier generated by a random deep spiking neural network and a uniformly random binary classifier. In general, the probability distribution of the functions generated by random deep neural networks is a good choice for the prior probability distribution in the PAC-Bayesian generalization bounds.
Therefore, our results constitute a fundamental step forward in the characterisation of this distribution, contributing to the understanding of the generalization properties of SNNs.